TY - JOUR
T1 - Synergistic combination of ether-linkage and polymer-in-salt for electrolytes with facile Li+ conducting and high stability in solid-state lithium batteries
AU - Nguyen, Minh Le
AU - Nguyen, Van Can
AU - Lee, Yuh Lang
AU - Jan, Jeng Shiung
AU - Teng, Hsisheng
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/2
Y1 - 2024/2
N2 - In developing solid polymer electrolytes (SPEs), networked SPE (NSPE) and polymer-in-salt (PiS) configurations are effective strategies to achieve high ionic conductivity. The ether linkage of poly(ethylene oxide) (PEO) effectively dissociates salts, among which salt Li[N(SO2F)2] (LiFSI) exhibits excellent Li+-conductive characteristics. The present study synthesizes a PiS-NSPE comprising 55 wt% LiFSI and 45 wt% PEO-based NSPE. The PiS configuration creates aggregated Li+n-FSI−m domains for Li+ transport through the decoupling ion-conductive mechanism and the NSPE, with high-voltage tolerance, dissociates LiFSI and segregates the Li+n-FSI−m domains into interconnected clusters for Li+ percolation. With such a synergistic combination, the PiS-NSPE exhibits an ionic conductivity of 2.3 × 10−3 S cm−1 and a Li+-transference number of 0.69 at 30 ℃. Protected by LiFSI, the PiS-NSPE is electrochemically stable until 4.6 V (vs. Li/Li+). The elastic feature enables the PiS-NSPE to withstand the Li-anode volume change and the lithiophilic FSI−-derived interlayer facilitates smooth Li deposition. The high compatibility between the PiS-NSPE and electrode materials results in the excellent performance of commercial-scale cathodes (∼10 mg cm−2 in active mass) in batteries. The synergy between PEO-based NSPEs and high-content LiFSI is promising in realizing the practical application of SPEs in all-solid-state batteries.
AB - In developing solid polymer electrolytes (SPEs), networked SPE (NSPE) and polymer-in-salt (PiS) configurations are effective strategies to achieve high ionic conductivity. The ether linkage of poly(ethylene oxide) (PEO) effectively dissociates salts, among which salt Li[N(SO2F)2] (LiFSI) exhibits excellent Li+-conductive characteristics. The present study synthesizes a PiS-NSPE comprising 55 wt% LiFSI and 45 wt% PEO-based NSPE. The PiS configuration creates aggregated Li+n-FSI−m domains for Li+ transport through the decoupling ion-conductive mechanism and the NSPE, with high-voltage tolerance, dissociates LiFSI and segregates the Li+n-FSI−m domains into interconnected clusters for Li+ percolation. With such a synergistic combination, the PiS-NSPE exhibits an ionic conductivity of 2.3 × 10−3 S cm−1 and a Li+-transference number of 0.69 at 30 ℃. Protected by LiFSI, the PiS-NSPE is electrochemically stable until 4.6 V (vs. Li/Li+). The elastic feature enables the PiS-NSPE to withstand the Li-anode volume change and the lithiophilic FSI−-derived interlayer facilitates smooth Li deposition. The high compatibility between the PiS-NSPE and electrode materials results in the excellent performance of commercial-scale cathodes (∼10 mg cm−2 in active mass) in batteries. The synergy between PEO-based NSPEs and high-content LiFSI is promising in realizing the practical application of SPEs in all-solid-state batteries.
UR - http://www.scopus.com/inward/record.url?scp=85182503646&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85182503646&partnerID=8YFLogxK
U2 - 10.1016/j.ensm.2024.103178
DO - 10.1016/j.ensm.2024.103178
M3 - Article
AN - SCOPUS:85182503646
SN - 2405-8297
VL - 65
JO - Energy Storage Materials
JF - Energy Storage Materials
M1 - 103178
ER -