Synthesis of fullerenol-derived elastomers and conductive elastomers

Long Y. Chiang, Lee Y. Wang, C. S. Kuo, J. G. Lin, C. Y. Huang

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


Utilization of polyhydroxylated C60 in a condensation reaction with diisocyanated oligo(tetramethylene oxide) led to the successful fabrication of elastomeric poly(urethane-ether) networks. These polymer networks exhibit interesting thermal behavior at low temperatures, improved tensile strength and elongation at ambient temperatures, and enhanced thermal mechanical stability at high temperatures. Design of conducting elastomers was made by carrying out an in situ polymerization of conductive polymer precursors in an interpenetrating fashion at the near-surface of polyhydroxylated C60-hypercrosslinked elastomers. Results demonstrated that elastomers with an appreciable conductivity while retaining desirable elastic properties of the network can be achieved. The room-temperature conductivity of polyaniline interpenetrated (IPN) conducting elastomer was found to be 2.0 Scm-1. The tensile strength and elongation at break of one conductive IPN elastomer was found to be 20 MPa and 480%, respectively. Interestingly, the strain dependent conductivity of these conducting elastomers was found to increase progressively above 200% of elongation. These results demonstrated, for the first instance, conductivity measurements of organic conducting elastomers at an elongation length of higher than 300%, showing a r.t. conductivity of >4.0 Scm-1.

Original languageEnglish
Pages (from-to)479-484
Number of pages6
JournalMacromolecular Symposia
Publication statusPublished - 1997 Jun

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Organic Chemistry
  • Polymers and Plastics
  • Materials Chemistry


Dive into the research topics of 'Synthesis of fullerenol-derived elastomers and conductive elastomers'. Together they form a unique fingerprint.

Cite this