System-level test coverage prediction by structural stress test data mining

Bing Yang Lin, Cheng Wen Wu, Harry H. Chen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

To achieve high quality of silicon ICs, system-level test (SLT) can be performed after regular final test. This is important for chips manufactured in advanced technologies, as systematic failures are getting harder to detect by conventional structural tests. However, due to long test time and extra human efforts, the cost for SLT is high. A possible way to replace SLT without quality loss is to identify SLT failure suspects with stress tests. In this work, we apply 60,000 structural stress test patterns to the CPU blocks of a real SOC product, using 20 stressed voltage-frequency corners. We try to identify the correlation between the stress test data and SLT-pass/fail results of the CPU blocks. By the proposed differential feature-based methodology, 32 outliers are identified, which are assumed to be CPU-fail chips. Because of the lack of exact CPU-fail chip IDs for verification, the identified chip IDs are compared with the IDs identified from previous works, which use the same data but different machine-learning features and method for the same purpose. After comparison, 30 out of a total of 33 CPU-fail suspects matched. Although this does not immediately imply that the SLT can be replaced by the structural stress tests, it shows more evidence that test data mining can be further explored for test time reduction and/or quality improvement.

Original languageEnglish
Title of host publication2015 International Symposium on VLSI Design, Automation and Test, VLSI-DAT 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781479962754
DOIs
Publication statusPublished - 2015 May 28
Event2015 International Symposium on VLSI Design, Automation and Test, VLSI-DAT 2015 - Hsinchu, Taiwan
Duration: 2015 Apr 272015 Apr 29

Publication series

Name2015 International Symposium on VLSI Design, Automation and Test, VLSI-DAT 2015

Other

Other2015 International Symposium on VLSI Design, Automation and Test, VLSI-DAT 2015
Country/TerritoryTaiwan
CityHsinchu
Period15-04-2715-04-29

All Science Journal Classification (ASJC) codes

  • Hardware and Architecture
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'System-level test coverage prediction by structural stress test data mining'. Together they form a unique fingerprint.

Cite this