Targeting cathepsin S promotes activation of OLF1-BDNF/TrkB axis to enhance cognitive function

Hao Wei Lee, Szu Jung Chen, Kuen Jer Tsai, Kuei Sen Hsu, Yi Fan Chen, Chih Hua Chang, Hsiao Han Lin, Wen Yun Hsueh, Hsing Pang Hsieh, Yueh Feng Lee, Huai Chueh Chiang, Jang Yang Chang

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Background: Cathepsin S (CTSS) is a cysteine protease that played diverse roles in immunity, tumor metastasis, aging and other pathological alterations. At the cellular level, increased CTSS levels have been associated with the secretion of pro-inflammatory cytokines and disrupted the homeostasis of Ca2+ flux. Once CTSS was suppressed, elevated levels of anti-inflammatory cytokines and changes of Ca2+ influx were observed. These findings have inspired us to explore the potential role of CTSS on cognitive functions. Methods: We conducted classic Y-maze and Barnes Maze tests to assess the spatial and working memory of Ctss−/− mice, Ctss+/+ mice and Ctss+/+ mice injected with the CTSS inhibitor (RJW-58). Ex vivo analyses including long-term potentiation (LTP), Golgi staining, immunofluorescence staining of sectioned whole brain tissues obtained from experimental animals were conducted. Furthermore, molecular studies were carried out using cultured HT-22 cell line and primary cortical neurons that treated with RJW-58 to comprehensively assess the gene and protein expressions. Results: Our findings reported that targeting cathepsin S (CTSS) yields improvements in cognitive function, enhancing both working and spatial memory in behavior models. Ex vivo studies showed elevated levels of long-term potentiation levels and increased synaptic complexity. Microarray analysis demonstrated that brain-derived neurotrophic factor (BDNF) was upregulated when CTSS was knocked down by using siRNA. Moreover, the pharmacological blockade of the CTSS enzymatic activity promoted BDNF expression in a dose- and time-dependent manner. Notably, the inhibition of CTSS was associated with increased neurogenesis in the murine dentate gyrus. These results suggested a promising role of CTSS modulation in cognitive enhancement and neurogenesis. Conclusion: Our findings suggest a critical role of CTSS in the regulation of cognitive function by modulating the Ca2+ influx, leading to enhanced activation of the BDNF/TrkB axis. Our study may provide a novel strategy for improving cognitive function by targeting CTSS.

Original languageEnglish
Article number46
JournalJournal of biomedical science
Volume31
Issue number1
DOIs
Publication statusPublished - 2024 Dec

All Science Journal Classification (ASJC) codes

  • Endocrinology, Diabetes and Metabolism
  • Molecular Biology
  • Clinical Biochemistry
  • Cell Biology
  • Biochemistry, medical
  • Pharmacology (medical)

Fingerprint

Dive into the research topics of 'Targeting cathepsin S promotes activation of OLF1-BDNF/TrkB axis to enhance cognitive function'. Together they form a unique fingerprint.

Cite this