Tetrapodal ZnO nanomaterial synthesis for antibacterial fluoroethylene vinyl ether polymer coating

Yaowei Yeh, Pingching Wu, Jianfu Li, Shijie Wang, Juihsiung Huang, Kaoshu Chuang, Tsunglin Tsai, Liheng Kao

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


Antibacterial coatings can be nanofabricated to provide antimicrobial persistence, nanostructural tailoring, and superhydrophobicity. This study presents a method for preparing an effective antibacterial coating by introducing tetrapodal ZnO (T-ZnO) nanomaterials on a fluoroethylene vinyl ether polymer (FEVE). T-ZnO nanomaterials were as-synthesized by flame transport synthesis and characterized. The T-ZnO exhibited a tetrapodal micro- and nanostructure with four legs of ∼43 μm diameter, comprising 86.67 and 12.90 wt% of Zn and O, respectively. High-resolution images of a single leg with sharp whiskers exhibited well-developed crystallinity. The antibacterial capabilities of T-ZnO functional coatings were determined using a reaction solution consisting of FEVE directly soaked in various wt% of T-ZnO with ethyl acetate. The 10 wt% T-ZnO nanocomplex coating exhibited the best surface hydrophobicity, with a water contact angle of 155°. The proposed T-ZnO on a fluoroethylene polymer-based coating exhibited higher antibacterial efficacy toward Gram-positive S. Aureus and -negative E. Coli compared with a standard polymer-based coating. In examining cellular toxicity, no harm was found to NIH/3T3 cells using the CCK-8 assay. Hence, this study provides a simple method for preparing safe and effective antibacterial coatings for practical applications.

Original languageEnglish
Article number134435
JournalMaterials Letters
Publication statusPublished - 2023 Aug 1

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Tetrapodal ZnO nanomaterial synthesis for antibacterial fluoroethylene vinyl ether polymer coating'. Together they form a unique fingerprint.

Cite this