TY - JOUR
T1 - The comprehensive electrophysiological study of curcuminoids on delayed-rectifier K+ currents in insulin-secreting cells
AU - Kuo, Ping Chung
AU - Yang, Chia Jung
AU - Lee, Yu Chi
AU - Chen, Pei Chun
AU - Liu, Yen Chin
AU - Wu, Sheng Nan
N1 - Funding Information:
This work was partly supported by a grant from National Cheng Kung University (No. 1030101 ), Tainan, Taiwan. The authors would like to thank Huei-Zen Chen for technical assistance.
Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2018/1/15
Y1 - 2018/1/15
N2 - Curcumin (CUR) has been demonstrated to induce insulin release from pancreatic β-cells; however, how curcuminoids (including demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC)) exert any possible effects on membrane ion currents inherently in insulin-secreting cells remains largely unclear. The effects of CUR and other structurally similar curcuminoids on ion currents in rat insulin-secreting (INS-1) insulinoma cells were therefore investigated in this study. The effects of these compounds on ionic currents and membrane potential were studied by patch-clamp technique. CUR suppressed the amplitude of delayed-rectifier K+ current (IK(DR)) in a time-, state- and concentration-dependent manner in these cells and the inhibition was not reversed by diazoxide, nicorandil or chlorotoxin. The value of dissociation constant for CUR-induced suppression of IK(DR) in INS-1 cells was 1.26 μM. Despite the inability of CUR to alter the activation rate of IK(DR), it accelerated current inactivation elicited by membrane depolarization. Increasing CUR concentrations shifted the inactivation curve of IK(DR) to hyperpolarized potential and slowed the recovery of IK(DR) inactivation. CUR, DMC, and BDMC all exerted depressant actions on IK(DR) amplitude to a similar magnitude, although DMC and BDMC did not increase current inactivation clearly. CUR slightly suppressed the peak amplitude of voltage-gated Na+ current. CUR, DMC and BDMC depolarized the resting potential and increased firing frequency of action potentials. The CUR-mediated decrease of IK(DR) and the increase of current inactivation also occurred in βTC-6 INS-1 cells. Taken these results together, these effects may be one of the possible mechanisms contributing their insulin-releasing effect.
AB - Curcumin (CUR) has been demonstrated to induce insulin release from pancreatic β-cells; however, how curcuminoids (including demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC)) exert any possible effects on membrane ion currents inherently in insulin-secreting cells remains largely unclear. The effects of CUR and other structurally similar curcuminoids on ion currents in rat insulin-secreting (INS-1) insulinoma cells were therefore investigated in this study. The effects of these compounds on ionic currents and membrane potential were studied by patch-clamp technique. CUR suppressed the amplitude of delayed-rectifier K+ current (IK(DR)) in a time-, state- and concentration-dependent manner in these cells and the inhibition was not reversed by diazoxide, nicorandil or chlorotoxin. The value of dissociation constant for CUR-induced suppression of IK(DR) in INS-1 cells was 1.26 μM. Despite the inability of CUR to alter the activation rate of IK(DR), it accelerated current inactivation elicited by membrane depolarization. Increasing CUR concentrations shifted the inactivation curve of IK(DR) to hyperpolarized potential and slowed the recovery of IK(DR) inactivation. CUR, DMC, and BDMC all exerted depressant actions on IK(DR) amplitude to a similar magnitude, although DMC and BDMC did not increase current inactivation clearly. CUR slightly suppressed the peak amplitude of voltage-gated Na+ current. CUR, DMC and BDMC depolarized the resting potential and increased firing frequency of action potentials. The CUR-mediated decrease of IK(DR) and the increase of current inactivation also occurred in βTC-6 INS-1 cells. Taken these results together, these effects may be one of the possible mechanisms contributing their insulin-releasing effect.
UR - http://www.scopus.com/inward/record.url?scp=85037677582&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85037677582&partnerID=8YFLogxK
U2 - 10.1016/j.ejphar.2017.12.004
DO - 10.1016/j.ejphar.2017.12.004
M3 - Article
C2 - 29225191
AN - SCOPUS:85037677582
SN - 0014-2999
VL - 819
SP - 233
EP - 241
JO - European Journal of Pharmacology
JF - European Journal of Pharmacology
ER -