Abstract
We used density functional theory to study the mechanism of n-butane oxidation to maleic anhydride on the vanadium phosphorus oxide (VPO) surface. We found that O(1)=P on the VVOPO4 surface is the active center for initiating the VPO chemistry through extraction of H from alkane C-H bonds. This contrasts sharply with previous suggestions that the active center is either the V-O bonds or else a chemisorbed O2 on the (V IVO)2P2O7 surface. The ability of O(1)=P to cleave alkane C-H bonds is due to its strong basicity coupled with large reduction potentials of nearby VV ions. We examined several pathways for the subsequent functionalization of n-butane to maleic anhydride and found that the overall barrier does not exceed 21.7 kcal/mol.
Original language | English |
---|---|
Pages (from-to) | 4600-4603 |
Number of pages | 4 |
Journal | Journal of the American Chemical Society |
Volume | 135 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2013 Mar 27 |
All Science Journal Classification (ASJC) codes
- Catalysis
- Chemistry(all)
- Biochemistry
- Colloid and Surface Chemistry