The effect of solvents on the performance of CH3NH3PbI3 perovskite solar cells

Pao Hsun Huang, Yeong Her Wang, Jhong Ciao Ke, Chien Jung Huang

Research output: Contribution to journalArticlepeer-review

31 Citations (Scopus)


The properties of perovskite solar cells (PSCs) fabricated using various solvents was studied. The devices had an indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)/CH3NH3PbI3 (fabricated by using various solvents)/fullerene (C60)/bathocuproine (BCP)/silver (Ag) structure. The solvents used were dimethylformamide (DMF), γ-butyrolactone (GBL), dimethyl sulfoxide (DMSO), a mixture of DMSO and DMF (1:1 v/v), and a mixture of DMSO and GBL (DMSO: GBL, 1:1 v/v), respectively. The power conversion efficiency (PCE) of the device fabricated using DMF is zero, which is attributed to the poor coverage of CH3NH3PbI3 film on the substrate. In addition, the PCE of the device made using GBL is only 1.74% due to the low solubility of PbI2 and CH3NH3I. In contrast, the PCE of the device fabricated using the solvents containing DMSO showed better performance. This is ascribed to the high solubilization properties and strong coordination of DMSO. As a result, a PCE of 9.77% was obtained using a mixed DMSO:GBL solvent due to the smooth surface, uniform film coverage on the substrate and the high crystallization of the perovskite structure. Finally, a mixed DMSO: DMF:GBL (5:2:3 v/v/v) solvent that combined the advantages of each solvent was used to fabricate a device, leading to a further improvement of the PCE of the resulting PSC to 10.84%.

Original languageEnglish
Article number599
Issue number5
Publication statusPublished - 2017

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Energy (miscellaneous)
  • Control and Optimization
  • Electrical and Electronic Engineering


Dive into the research topics of 'The effect of solvents on the performance of CH3NH3PbI3 perovskite solar cells'. Together they form a unique fingerprint.

Cite this