The ice model and the eight-vertex model on the two-dimensional Sierpinski gasket

Shu Chiuan Chang, Lung Chi Chen, Hsin Yun Lee

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

We present the numbers of ice model configurations (with Boltzmann factors equal to one) I(n) on the two-dimensional Sierpinski gasket SG(n) at stage n. The upper and lower bounds for the entropy per site, defined as lim v→lnI(n)/v, where v is the number of vertices on SG(n), are derived in terms of the results at a certain stage. As the difference between these bounds converges quickly to zero as the calculated stage increases, the numerical value of the entropy can be evaluated with more than a hundred significant figures accuracy. The corresponding result of the ice model on the generalized two-dimensional Sierpinski gasket SGb(n) with b=3 is also obtained, and the general upper and lower bounds for the entropy per site for arbitrary b are conjectured. We also consider the number of eight-vertex model configurations on SG(n) and the number of generalized vertex models Eb(n) on SGb(n), and obtain exactly Eb(n)= 22(b+1)b(b+1)/2]n+b+4/(b+2). It follows that the entropy per site is limv→lnEb(n)/v=2(b+1)b+4ln2.

Original languageEnglish
Pages (from-to)1776-1787
Number of pages12
JournalPhysica A: Statistical Mechanics and its Applications
Volume392
Issue number8
DOIs
Publication statusPublished - 2013 Apr 15

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'The ice model and the eight-vertex model on the two-dimensional Sierpinski gasket'. Together they form a unique fingerprint.

Cite this