The Improved Compact QP Method For Resolving Manipulator Redundancy

Fan Tien Cheng, Rong Jing Sheu, Tsing Hua Chen

Research output: Contribution to journalArticle

76 Citations (Scopus)

Abstract

The Compact QP method is an effective and efficient algorithm for resolving the manipulator redundancy under inequality constraints. In this paper, a more computationally efficient scheme which will improve the efficiency of the Compact QP method—the Improved Compact QP method—is developed. With the technique of work space decomposition, the Redundant Inverse Kinematics problem can be decomposed into two subproblems. Thus, the size of the redundancy problem can be reduced. For an n degree-of-freedom spatial redundant manipulator, instead of a 6 × n matrix, only a 3 × (n − 3) matrix is needed to be manipulated by Gaussian elimination with partial pivoting for selecting the free variables. The simulation results on the CESAR manipulator indicate that the speedup of the Compact QP method as compared with the Original QP method is about 4.3. Furthermore, the speedup of the Improved Compact QP method is about 5.6. Therefore, it is believed that the Improved Compact QP method is one of the most efficient and effective optimization algorithm for resolving the manipulator redundancy under inequality constraints.

Original languageEnglish
Pages (from-to)1521-1530
Number of pages10
JournalIEEE Transactions on Systems, Man, and Cybernetics
Volume25
Issue number11
DOIs
Publication statusPublished - 1995 Nov

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Cite this