The movable cone of Calabi–Yau threefolds in ruled Fano manifolds

Atsushi Ito, Ching Jui Lai, Sz Sheng Wang

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


We describe explicitly the chamber structure of the movable cone for a general complete intersection Calabi–Yau threefold in a non-split (n+4)-dimensional Pn-ruled Fano manifold of index n+1 and Picard number two. Moreover, all birational minimal models of such Calabi–Yau threefolds are found whose number is finite.

Original languageEnglish
Article number105053
JournalJournal of Geometry and Physics
Publication statusPublished - 2024 Jan

All Science Journal Classification (ASJC) codes

  • Mathematical Physics
  • General Physics and Astronomy
  • Geometry and Topology


Dive into the research topics of 'The movable cone of Calabi–Yau threefolds in ruled Fano manifolds'. Together they form a unique fingerprint.

Cite this