The putative chloride channel hCLCA2 has a single C-terminal transmembrane segment

Randolph C. Elble, Vijay Walia, Hung Chi Cheng, Che J. Connon, Lars Mundhenk, Achim D. Gruber, Bendicht U. Pauli

Research output: Contribution to journalArticlepeer-review

36 Citations (Scopus)


Calcium-activated chloride channel (CLCA) proteins were first described as a family of plasma membrane Cl- channels that could be activated by calcium. Genetic and electrophysiological studies have supported this view. The human CLCA2 protein is expressed as a 943-amino-acid precursor whose N-terminal signal sequence is removed followed by internal cleavage near amino acid position 680. Earlier investigations of transmembrane geometry suggested five membrane passes. However, analysis by the more recently derived simple modular architecture research tool algorithm predicts that a C-terminal 22-amino-acid hydrophobic segment comprises the only transmembrane pass. To resolve this question, we raised an antibody against hCLCA2 and investigated the synthesis, localization, maturation, and topology of the protein. Cell surface biotinylation and endoglycosidase H analysis revealed a 128-kDa precursor confined to the endoplasmic reticulum and a maturely glycosylated 141-kDa precursor at the cell surface by 48 h post-transfection. By 72 h, 109-kDa N-terminal and 35-kDa C-terminal cleavage products were detected at the cell surface but not in the endoplasmic reticulum. Surprisingly, however, the 109-kDa product was spontaneously shed into the medium or removed by acid washes, whereas the precursor and 35-kDa product were retained by the membrane. Two other CLCA family members, bCLCA2 and hCLCA1, also demonstrated preferential release of the N-terminal product. Transfer of the hCLCA2 C-terminal hydrophobic segment to a secreted form of green fluorescent protein was sufficient to target that protein to the plasma membrane. Together, these data indicate that hCLCA2 is mostly extracellular with only a single transmembrane segment followed by a short cytoplasmic tail and is itself unlikely to form a channel.

Original languageEnglish
Pages (from-to)29448-29454
Number of pages7
JournalJournal of Biological Chemistry
Issue number40
Publication statusPublished - 2006 Oct 6

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'The putative chloride channel hCLCA2 has a single C-terminal transmembrane segment'. Together they form a unique fingerprint.

Cite this