Abstract
The swash of solitary waves on a plane beach is studied using large-scale experiments. Ten wave cases are examined which range from non-breaking waves to plunging breakers. The focus of this study is on the influence of breaker type on flow evolution, spatiotemporal variations of bed shear stresses and run-up. Measurements are made of the local water depths, flow velocities and bed shear stresses (using a shear plate sensor) at various locations in the swash zone. The bed shear stress is significant near the tip of the swash during uprush and in the shallow flow during the later stages of downrush. In between, the flow evolution is dominated by gravity and follows an explicit solution to the nonlinear shallow water equations, i.e. the flow due to a dam break on a slope. The controlling scale of the flow evolution is the initial velocity of the shoreline immediately following waveform collapse, which can be predicted by measurements of wave height prior to breaking, but also shows an additional dependence on breaker type. The maximum onshore-directed bed shear stress increases significantly onshore of the stillwater shoreline for non-breaking waves and onshore of the waveform collapse point for breaking waves. A new normalization for the bed shear stress which uses the initial shoreline velocity is presented. Under this normalization, the variation of the maximum magnitudes of the bed shear stress with distance along the beach, which is normalized using the run-up, follows the same trend for different breaker types. For the uprush, the maximum dimensionless bed shear stress is approximately 0.01, whereas for the downrush, it is approximately 0.002.
Original language | English |
---|---|
Pages (from-to) | 556-597 |
Number of pages | 42 |
Journal | Journal of Fluid Mechanics |
Volume | 779 |
DOIs | |
Publication status | Published - 2015 Aug 18 |
All Science Journal Classification (ASJC) codes
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering
- Applied Mathematics