The Use of Customized Three-Dimensionally Printed Mandible Prostheses with a Pressure-Reducing Device: A Finite Element Analysis in Different Chewing Positions, Biomechanical Testing, and In Vivo Animal Study Using Lanyu Pigs

Chun Feng Chen, Chun Ming Chen, Han Sheng Chen, Wei Chin Huang, Yung Chung Chen, Hung Chih Chang, Sung Ho Liu, Tsung Lung Yang, Ling Lin Wang, Ping Ho Chen

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Segmental bony defects of the mandible constitute a complete loss of the regional part of the mandible. Although several types of customized three-dimension-printed mandible prostheses (CMPs) have been developed, this technique has yet to be widely used. We used CMP with a pressure-reducing device (PRD) to investigate its clinical applicability. First, we used the finite element analysis (FEA). We designed four models of CMP (P1 to P4), and the result showed that CMP with posterior PRD deployment (P4 group) had the maximum total deformation in the protrusion and right excursion positions, and in clenching and left excursion positions, posterior screws had the minimum von Mises stress. Second, the P4 CMP-PRD was produced using LaserCUSING from titanium alloy (Ti-6Al-4V). The fracture test result revealed that the maximum static pressure that could be withstood was 189 N, and a fatigue test was conducted for 5,000,000 cycles. Third, animal study was conducted on five male 4-month-old Lanyu pigs. Four animals completed the experiment. Two animals had CMP exposure in the oral cavity, but there was no significant inflammation, and one animal had a rear wing fracture. According to a CT scan, the lingual cortex of the mandible crawled along the CMP surface, and a bony front-to-back connection was noted in one animal. A histological examination indicated that CMP was significantly less reactive than control materials (p=0.0170). Adequate PRD deployment in CMP may solve a challenge associated with CMP, thus promoting its use in clinical practice.

Original languageEnglish
Article number9880454
JournalBioMed research international
Volume2022
DOIs
Publication statusPublished - 2022

All Science Journal Classification (ASJC) codes

  • General Biochemistry,Genetics and Molecular Biology
  • General Immunology and Microbiology

Fingerprint

Dive into the research topics of 'The Use of Customized Three-Dimensionally Printed Mandible Prostheses with a Pressure-Reducing Device: A Finite Element Analysis in Different Chewing Positions, Biomechanical Testing, and In Vivo Animal Study Using Lanyu Pigs'. Together they form a unique fingerprint.

Cite this