Thermal behavior and hydrogen production of methanol steam reforming and autothermal reforming with spiral preheating

Wei Hsin Chen, Yu Jhih Syu

Research output: Contribution to journalArticlepeer-review

42 Citations (Scopus)


The present study aims to investigate the thermal behavior and hydrogen production characteristics from methanol steam reforming (MSR) and autothermal reforming (ATR) under the effects of a Cu-Zn-based catalyst and spiral preheating. Two different reaction temperatures of 250 and 300 °C are taken into account. Meanwhile, the O/C ratio (i.e. the molar ratio between O 2 and methanol) and S/C ratio (i.e. the molar ratio between steam and methanol) are controlled in the ranges of 0-0.5 and 1-2, respectively. The condition of O/C = 0 represents the reaction of MSR. By monitoring the supplied power into the reactor with a fixed gas hourly space velocity (GHSV) of 72,000 h-1, the experimental results indicate that an exothermic reaction from ATR can be attained once the O/C ratio is as high as 0.125. Increasing O/C ratio causes more heat released from the reaction, this results in the decrease in the frequency of supplied power, especially at O/C = 0.5. It is noted that the concentration of CO in the product gas is quite low compared to that of CO2. An increase in O/C ratio abates the concentration of H 2 from the consumption of per mol methanol; however, the H 2 yield in terms of thermodynamic analysis is increased. On account of the utilization of spiral preheating on the reactants, within the investigated operating conditions the methanol conversion and hydrogen yield were always higher than 95 and 90%, respectively. A comparison suggests that the methanol conversion from ATR of methanol with spiral preheating is superior to those of other studies.

Original languageEnglish
Pages (from-to)3397-3408
Number of pages12
JournalInternational Journal of Hydrogen Energy
Issue number5
Publication statusPublished - 2011 Mar

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Condensed Matter Physics
  • Energy Engineering and Power Technology


Dive into the research topics of 'Thermal behavior and hydrogen production of methanol steam reforming and autothermal reforming with spiral preheating'. Together they form a unique fingerprint.

Cite this