Thermal reaction of cristobalite in nano- SiO2/α- Al 2 O3 powder systems for mullite synthesis

Pei Ching Yu, Yung Wei Tsai, Fu Su Yen, Cheng Liang Huang

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Nanoscaled cristobalite and α-Al2O3 powders were used as the starting materials for synthesizing mullite by solid-state reaction. The thermal reaction of the cristobalite with α-Al 2O3 during the thermal treatment was examined. Cristobalite powder with a D50 value of 430 nm was adopted to mix with α-Al2O3 powders with a D50 values of 230, 310, and 400 nm in a stoichiometric composition of 3Al2O 3·2SiO2 (71.8 wt% α-Al2O 3 and 28.2 wt% SiO2). Samples for thermal reaction were prepared using uniaxial pressed from the three mixtures that showed various particle number ratios of SiO2/Al2O3 due to the different particle sizes of α-Al2O3. Examinations were performed by differential thermal analysis, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy techniques. The results showed that cristobalite particles amorphized during the thermal treatment, and then reacted with the α-Al2O3 particle to form mullite via nucleation and growth. The amorphization temperature can be reduced by using finer-sized α-Al2O3 powders, thus leading to a lower temperature for mullite formation. Mullite crystals with a multidomain structure were observed in the α-Al2O3 particle matrixes. The crystal orientation of the mullite was controlled by the α-Al 2O3 matrix, that is, [001] α-Al2O 3 → [001] mullite. These results indicate that the amorphization of cristobalite may trigger the reaction of SiO2 with α-Al2O3, initiating the nucleation of mullite. The α-Al2O3 particles act as the hosts for mullite formation and determine the size of the mullite particles.

Original languageEnglish
Pages (from-to)2431-2438
Number of pages8
JournalJournal of the American Ceramic Society
Volume97
Issue number8
DOIs
Publication statusPublished - 2014 Aug

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Thermal reaction of cristobalite in nano- SiO<sub>2</sub>/α- Al <sub>2</sub> O<sub>3</sub> powder systems for mullite synthesis'. Together they form a unique fingerprint.

  • Cite this