Abstract
The hexagonal mesostructured nanocrystalline 16 mol% yttria-stabilized zirconia (8YSZ) formed by using a Pluronic triblock copolymer F127 as template is reported as a function of temperature. The characterization of the samples is achieved using wide-angle XRD diffraction, small-angle XRD diffraction, nitrogen adsorption-desorption, and transmission electron microscopy. The mesostructured 8YSZ calcined at 500 °C is found to be based upon a 2D periodic array of mesopores with diameter around 6.4 nm and the 8YSZ framework is composed of about 4.8 nm nanocrystallites. The sample has a BET surface area of 124 m2/g with a narrow pore size distribution. The ordered mesoporous structure remained even after calcination up to temperature of 600 °C grew out collapsed gradually when calcined above 700 °C owing to the fact that the crystallite size of 8YSZ larger than the inorganic pore-wall thickness.
Original language | English |
---|---|
Pages (from-to) | 1161-1167 |
Number of pages | 7 |
Journal | Journal of the European Ceramic Society |
Volume | 28 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2008 |
All Science Journal Classification (ASJC) codes
- Ceramics and Composites
- Materials Chemistry