Abstract
Topological materials, possessing spin-momentum locked topological surface states (TSS), have attracted much interest due to their potential applications in spintronics. α-phase Sn (α-Sn), being one of them, displays enriched topological phases via band-gap engineering through a strain or confinement effect. In this work, we investigated the band evolution of in-plane compressively strained α-Sn(001) thin films on InSb(001) in a wide range of thickness from 3 bilayers (BL) to 370 BL by combining angle-resolved photoemission spectra and first-principles calculations. Gapped surface states evolved to a linearly dispersive TSS at a critical thickness of 6 BL, indicating that the system undergoes a phase transition from topologically trivial to nontrivial. For films thicker than 30 BL, additional Rashba-like surface states (RSS) were identified. These RSS served as preformed TSS in another strain-induced topological phase transition. In thick films, 370-BL α-Sn(001), so as to preclude the confinement effect in thin films, our results were consistent with a Dirac semimetal phase with Dirac nodes located along Formula Presented. This thickness-dependent band-structure study deepens our understanding of topological phase transitions and the evolution of Dirac states. Furthermore, the coexistence of TSS and RSS in a Dirac semimetal α-Sn might significantly enhance the potential for spintronic applications.
Original language | English |
---|---|
Article number | 075109 |
Journal | Physical Review B |
Volume | 105 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2022 Feb 15 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics