Third-body and dissipation energy in green tribology film

Shih Chen Shi, Shia Seng Pek

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)


Green tribology film comprising hydroxypropyl methylcellulose modified with nanoparticles and molybdenum disulfide was prepared by the solvent evaporation method. The nanoparticle additives were Al, Cu, Al2O3, and CuO. The tribological behavior of nanoparticles and MoS2 was investigated using a ball-on-disk tribometer. The surface morphologies and worn surfaces were observed through scanning electron microscopy. The preferred orientation and crystallographic structure of MoS2 and nanoparticles in the composites were studied via X-ray diffraction. Energy-dispersive X-ray spectroscopy was used to analyze the transfer film formed on the counterball. The surface profile, wear depth, wear width, and wear volume were studied by a 3D optical profiler. The synergistic effect of micro-platelet MoS2 and nanoparticles contributed to the excellent wear resistances. It was found that the wear volume of hydroxypropyl methylcellulose (HPMC)/MoS2 composites decreased dramatically when Al, Cu, and CuO were used as fillers, and it decreased slightly with Al2O3. The optimal wear resistance was obtained with 3 wt.% additives. These filled composites had a lower coefficient of friction lower than that of unfilled HPMC/MoS2. The optimal result was observed for the HPMC/MoS2/CuO 3 wt.% composite coating, which reduces the wear and friction coefficient by 90% and 84%, respectively, as compared to coatings without additives. Nanoparticles existed in the wear track as the third particles improved the load capacity of the composites. The wear mechanism of the composites is discussed in terms of the worn surfaces and the analysis of transfer film with a third-body approach. The dissipation energy theory is used to evaluate the dominant wear mechanism of the system.

Original languageEnglish
Article number3787
JournalApplied Sciences (Switzerland)
Issue number18
Publication statusPublished - 2019 Sep 1

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Instrumentation
  • Engineering(all)
  • Process Chemistry and Technology
  • Computer Science Applications
  • Fluid Flow and Transfer Processes


Dive into the research topics of 'Third-body and dissipation energy in green tribology film'. Together they form a unique fingerprint.

Cite this