Three-dimensional Green's functions for composite laminates

F. G. Yuan, S. Yang, B. Yang

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)

Abstract

The three-dimensional Green's functions due to a point force in composite laminates are solved byusing generalized Stroh formalism and two-dimensional Fourier transforms. Each layer of the composite is generally anisotropic and linearlyelastic. The interfaces between different layers are parallel to the top and bottom surfaces of the composite and are perfectlybonded. The Green's functions of point forces applied at the free surface, interface, and in the interior of a layer are derived in the Fourier transformed domain respectively. The surfaces are imposed by a proportional spring-type boundary condition. The spring-type condition may be reduced to traction-free, displacement-.xed, and mirror-symmetric conditions. Numerical examples are given to demonstrate the validity and elegance of the present formulation of three-dimensional point-force Green's functions for composite laminates.

Original languageEnglish
Pages (from-to)331-342
Number of pages12
JournalInternational Journal of Solids and Structures
Volume40
Issue number2
DOIs
Publication statusPublished - 2003 Jan

All Science Journal Classification (ASJC) codes

  • Modelling and Simulation
  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Three-dimensional Green's functions for composite laminates'. Together they form a unique fingerprint.

Cite this