Three-dimensional network of graphene grown with carbon nanotubes as carbon support for fuel cells

Jing Yi Jhan, Yu Wei Huang, Chun Han Hsu, Hsisheng Teng, Daniel Kuo, Ping Lin Kuo

Research output: Contribution to journalArticlepeer-review

52 Citations (Scopus)

Abstract

A thermally reduced graphene oxide (TRGO) grown with carbon nanotubes composite (G-CNT) was utilized as three-dimensional highly conductive carbon scaffolds, where a large amount of small and homogeneous Pt nanoparticles (from 3.37 ± 1.22 to 4.24 ± 1.83 nm) was directly synthesized on G-CNT to acquire a new type of catalyst (Pt/G-CNT). Meanwhile, Pt nanoparticles loaded on TRGO (Pt/TRGO) and on TRGO blended with carbon nanotubes (Pt/G-b-CNT) were prepared for comparison. The G-CNT showed a very high electrical conductivity (144.4 S cm-1) compared to the G-b-CNT (67.5 S cm-1) and TRGO (9.1 S cm-1). In contrast to Pt/G-b-CNT (36.8 m2 g-1) and Pt/TRGO (28.1 m2 g-1), Pt/G-CNT showed a very high electrochemically active surface area (77.4 m2 g-1). As these catalysts were utilized as the anode for the fuel cell, the maximum power density value for Pt/G-CNT (32.0 mW cm-2) was about 65% and 74% higher than that of Pt/G-b-CNT (19.4 mW cm-2) and Pt/TRGO (18.4 mW cm-2), respectively, and 26% higher than that of E-TEK (25.4 mW cm-2).

Original languageEnglish
Pages (from-to)282-287
Number of pages6
JournalEnergy
Volume53
DOIs
Publication statusPublished - 2013 May 1

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Building and Construction
  • Pollution
  • Mechanical Engineering
  • Industrial and Manufacturing Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Three-dimensional network of graphene grown with carbon nanotubes as carbon support for fuel cells'. Together they form a unique fingerprint.

Cite this