TY - JOUR
T1 - Three-Dimensional Surface-Enhanced Raman Scattering Substrate Fabricated Using Chemical Decoration of Silver Nanoparticles on Electrospun Polycarbonate Nanofibers
AU - Balamurugan, Murugesan
AU - Yang, Jyisy
N1 - Publisher Copyright:
© Society for Applied Spectroscopy.
Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2017/5/1
Y1 - 2017/5/1
N2 - In this work, a simple method via decoration of silver nanoparticles (AgNPs) on electrospun polycarbonate nanofibers (PCNFs) was proposed to prepare highly sensitive three-dimensional (3D) substrates for surface-enhanced Raman scattering (SERS) measurements. The method proposed in this work gave a high sensitive Ag@PCNFs substrate, which resulted from a successful production of high surface area of PCNFs with a high efficiency in the decoration of AgNPs. To produce PCNFs suitable for SERS application, parameters in fabrication of PCNFs were systematically examined and correlated with their corresponding scanning electron microscope (SEM) images. Examined parameters included the concentration of PC solution, the solvent to form PC solution, the applied voltage, and the rotating speed of a drum collector. Using the optimized condition, the bead-free PCNFs with a diameter in the range of 200-400 nm were successfully produced. To increase the efficiency in decoration of AgNPs, the surface properties of PNCFs were altered with an organic solvent, which was selected experimentally with guidance of Hildebrand solubility parameter. Results indicated that methanol was the most suitable solvent to effectively decorate AgNPs on PCNFs. By probing with para-hydroxythiophenol (pHTP), prepared SERS substrates of Ag@PCNFs provided an enhancement factor to the order of 7, which is at least an order of magnitude larger than the reported values in the literature for SERS substrates prepared with the electrospinning technique.
AB - In this work, a simple method via decoration of silver nanoparticles (AgNPs) on electrospun polycarbonate nanofibers (PCNFs) was proposed to prepare highly sensitive three-dimensional (3D) substrates for surface-enhanced Raman scattering (SERS) measurements. The method proposed in this work gave a high sensitive Ag@PCNFs substrate, which resulted from a successful production of high surface area of PCNFs with a high efficiency in the decoration of AgNPs. To produce PCNFs suitable for SERS application, parameters in fabrication of PCNFs were systematically examined and correlated with their corresponding scanning electron microscope (SEM) images. Examined parameters included the concentration of PC solution, the solvent to form PC solution, the applied voltage, and the rotating speed of a drum collector. Using the optimized condition, the bead-free PCNFs with a diameter in the range of 200-400 nm were successfully produced. To increase the efficiency in decoration of AgNPs, the surface properties of PNCFs were altered with an organic solvent, which was selected experimentally with guidance of Hildebrand solubility parameter. Results indicated that methanol was the most suitable solvent to effectively decorate AgNPs on PCNFs. By probing with para-hydroxythiophenol (pHTP), prepared SERS substrates of Ag@PCNFs provided an enhancement factor to the order of 7, which is at least an order of magnitude larger than the reported values in the literature for SERS substrates prepared with the electrospinning technique.
UR - http://www.scopus.com/inward/record.url?scp=85018996464&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85018996464&partnerID=8YFLogxK
U2 - 10.1177/0003702816658670
DO - 10.1177/0003702816658670
M3 - Article
C2 - 27390097
AN - SCOPUS:85018996464
VL - 71
SP - 879
EP - 887
JO - Applied Spectroscopy
JF - Applied Spectroscopy
SN - 0003-7028
IS - 5
ER -