TY - JOUR
T1 - Toxic assessment of heavily traffic-related fine particulate matter using an in-vivo wild-type caenorhabditis elegans model
AU - Chung, Meng Ching
AU - Huang, Kuo Lin
AU - Avelino, Japheth L.
AU - Tayo, Lemmuel L.
AU - Lin, Chih Chung
AU - Tsai, Ming Hsien
AU - Lin, Sheng Lun
AU - Wan Mansor, Wan Nurdiyana
AU - Su, Ching Kai
AU - Huang, Sen Ting
N1 - Publisher Copyright:
© The Author(s).
PY - 2020
Y1 - 2020
N2 - In association with the mortality rate due to air pollution, vehicular emitted fine particles (PM2.5) are a threat to public health. PM2.5-induced in-vivo studies on environmental microorganisms can be used to assess the adverse impacts of PM2.5 on human health. In the present study, the toxicity of traffic-related-air-pollutant (TRAP) PM2.5 was evaluated in the animal model Caenorhabditis elegans (C. elegans) using different toxicological endpoints such as lethality, survivability (lifespan), behavioral (head thrashing and body bending), and reproduction (brood size). The TRAP PM2.5 sample were collected in Taichung City, Taiwan from Mar 24 to April 15 in 2018. Of these 23 day samples, three samples (Days A, B, and C) were randomly selected. The results showed that no immediate lethality was observed after acute (24 h) exposure of the nematodes. On the other hand, sublethal endpoints of reproduction exhibited statistically significant dose-dependent reduction, although Day A and Day C did not decrease the egg-laying capability of the worms. For the neurological toxicity, it is inferred that the higher the PM2.5 concentrations, the more the adverse effects of neurobehavior (head trashing and body bending) it poses on the C. elegans. The lifespans of nematodes exposed to heavily TRAP PM2.5 were significantly shortened compared with those of untreated ones based on survival rate. The nematodes exposed PM2.5 models not only posed potentially adverse health effects on human but also represented ecotoxic impacts on the ecosystem. In conclusion, heavy concentrations of TRAP PM2.5 significantly and severely disrupted toxicological endpoints of neurology and reproduction to C. elegans. TRAP PM2.5 significantly shortened the lifespan of the nematodes compared with the control. TRAP PM2.5 might more severely influenced the specific toxic endpoints, such as lifespan and neurobehavira, in this in-vivo models compared with the reproductive endpoints.
AB - In association with the mortality rate due to air pollution, vehicular emitted fine particles (PM2.5) are a threat to public health. PM2.5-induced in-vivo studies on environmental microorganisms can be used to assess the adverse impacts of PM2.5 on human health. In the present study, the toxicity of traffic-related-air-pollutant (TRAP) PM2.5 was evaluated in the animal model Caenorhabditis elegans (C. elegans) using different toxicological endpoints such as lethality, survivability (lifespan), behavioral (head thrashing and body bending), and reproduction (brood size). The TRAP PM2.5 sample were collected in Taichung City, Taiwan from Mar 24 to April 15 in 2018. Of these 23 day samples, three samples (Days A, B, and C) were randomly selected. The results showed that no immediate lethality was observed after acute (24 h) exposure of the nematodes. On the other hand, sublethal endpoints of reproduction exhibited statistically significant dose-dependent reduction, although Day A and Day C did not decrease the egg-laying capability of the worms. For the neurological toxicity, it is inferred that the higher the PM2.5 concentrations, the more the adverse effects of neurobehavior (head trashing and body bending) it poses on the C. elegans. The lifespans of nematodes exposed to heavily TRAP PM2.5 were significantly shortened compared with those of untreated ones based on survival rate. The nematodes exposed PM2.5 models not only posed potentially adverse health effects on human but also represented ecotoxic impacts on the ecosystem. In conclusion, heavy concentrations of TRAP PM2.5 significantly and severely disrupted toxicological endpoints of neurology and reproduction to C. elegans. TRAP PM2.5 significantly shortened the lifespan of the nematodes compared with the control. TRAP PM2.5 might more severely influenced the specific toxic endpoints, such as lifespan and neurobehavira, in this in-vivo models compared with the reproductive endpoints.
UR - http://www.scopus.com/inward/record.url?scp=85089822663&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85089822663&partnerID=8YFLogxK
U2 - 10.4209/aaqr.2020.05.0192
DO - 10.4209/aaqr.2020.05.0192
M3 - Article
AN - SCOPUS:85089822663
SN - 1680-8584
VL - 20
SP - 1974
EP - 1986
JO - Aerosol and Air Quality Research
JF - Aerosol and Air Quality Research
IS - 9
ER -