TY - JOUR
T1 - Toxicological effects of NCKU-21, a phenanthrene derivative, on cell growth and migration of A549 and CL1-5 human lung adenocarcinoma cells
AU - Liao, Hsien Feng
AU - Pan, Chun Hsu
AU - Chou, Pei Yu
AU - Chen, Yi Fong
AU - Wu, Tian Shung
AU - Sheu, Ming Jyh
AU - Wu, Chieh Hsi
N1 - Publisher Copyright:
© 2017 Liao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2017/9
Y1 - 2017/9
N2 - Background: Chemotherapy insensitivity continues to pose significant challenges for treating non-small cell lung cancer (NSCLC). The purposes of this study were to investigate whether 3,6-dimethoxy-1,4,5,8-phenanthrenetetraone (NCKU-21) has potential activity to induce effective toxicological effects in different ethnic NSCLC cell lines, A549 and CL1-5 cells, and to examine its anticancer mechanisms. Methods: Mitochondrial metabolic activity and the cell-cycle distribution were analyzed using an MTT assay and flow cytometry in NCKU-21-treated cells. NCKU-21-induced cell apoptosis was verified by Annexin V-FITC/propidium iodide (PI) double-staining and measurement of caspase-3 activity. Western blotting and wound-healing assays were applied to respectively evaluate regulation of signaling pathways and cell migration by NCKU-21. Molecular interactions between target proteins and NCKU-21 were predicted and performed by molecular docking. A colorimetric screening assay kit was used to evaluate potential regulation of matrix metalloproteinase-9 (MMP-9) activity by NCKU-21. Results: Results indicated that NCKU-21 markedly induced cytotoxic effects that reduced cell viability via cell apoptosis in tested NSCLC cells. Activation of AMP-activated protein kinase (AMPK) and p53 protein expression also increased in both NSCLC cell lines stimulated with NCKU-21. However, repression of PI3K-AKT activation by NCKU-21 was found in CL1-5 cells but not in A549 cells. In addition, increases in phosphatidylserine externalization and caspase-3 activity also confirmed the apoptotic effect of NCKU-21 in both NSCLC cell lines. Moreover, cell migration and translational levels of the gelatinases, MMP-2 and MMP-9, were obviously reduced in both NSCLC cell lines after incubation with NCKU-21. Experimental data obtained from molecular docking suggested that NCKU-21 can bind to the catalytic pocket of MMP-9. However, the in vitro enzyme activity assay indicated that NCKU-21 has the potential to increase MMP-9 activity. Conclusions: Our results suggest that NCKU-21 can effectively reduce cell migration and induce apoptosis in A549 and CL1-5 cells, the toxicological effects of which may be partly modulated through PI3K-AKT inhibition, AMPK activation, an increase in the p53 protein, and gelatinase inhibition.
AB - Background: Chemotherapy insensitivity continues to pose significant challenges for treating non-small cell lung cancer (NSCLC). The purposes of this study were to investigate whether 3,6-dimethoxy-1,4,5,8-phenanthrenetetraone (NCKU-21) has potential activity to induce effective toxicological effects in different ethnic NSCLC cell lines, A549 and CL1-5 cells, and to examine its anticancer mechanisms. Methods: Mitochondrial metabolic activity and the cell-cycle distribution were analyzed using an MTT assay and flow cytometry in NCKU-21-treated cells. NCKU-21-induced cell apoptosis was verified by Annexin V-FITC/propidium iodide (PI) double-staining and measurement of caspase-3 activity. Western blotting and wound-healing assays were applied to respectively evaluate regulation of signaling pathways and cell migration by NCKU-21. Molecular interactions between target proteins and NCKU-21 were predicted and performed by molecular docking. A colorimetric screening assay kit was used to evaluate potential regulation of matrix metalloproteinase-9 (MMP-9) activity by NCKU-21. Results: Results indicated that NCKU-21 markedly induced cytotoxic effects that reduced cell viability via cell apoptosis in tested NSCLC cells. Activation of AMP-activated protein kinase (AMPK) and p53 protein expression also increased in both NSCLC cell lines stimulated with NCKU-21. However, repression of PI3K-AKT activation by NCKU-21 was found in CL1-5 cells but not in A549 cells. In addition, increases in phosphatidylserine externalization and caspase-3 activity also confirmed the apoptotic effect of NCKU-21 in both NSCLC cell lines. Moreover, cell migration and translational levels of the gelatinases, MMP-2 and MMP-9, were obviously reduced in both NSCLC cell lines after incubation with NCKU-21. Experimental data obtained from molecular docking suggested that NCKU-21 can bind to the catalytic pocket of MMP-9. However, the in vitro enzyme activity assay indicated that NCKU-21 has the potential to increase MMP-9 activity. Conclusions: Our results suggest that NCKU-21 can effectively reduce cell migration and induce apoptosis in A549 and CL1-5 cells, the toxicological effects of which may be partly modulated through PI3K-AKT inhibition, AMPK activation, an increase in the p53 protein, and gelatinase inhibition.
UR - http://www.scopus.com/inward/record.url?scp=85029742275&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85029742275&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0185021
DO - 10.1371/journal.pone.0185021
M3 - Article
C2 - 28945763
AN - SCOPUS:85029742275
SN - 1932-6203
VL - 12
JO - PloS one
JF - PloS one
IS - 9
M1 - e0185021
ER -