Transforming growth factor-beta protection of cancer cells against tumor necrosis factor cytotoxicity is counteracted by hyaluronidase (review).

Research output: Contribution to journalReview article

29 Citations (Scopus)

Abstract

Numerous cancer cells, when exposed to transforming growth factor beta (TGF-beta), become resistant to tumor necrosis factor (TNF) cytotoxicity. Pretreatment of L929 fibroblasts, for example, with TGF-beta isoforms (beta 1, beta 2 and beta 3) for at least 0.5-1 h results in resistance to TNF killing. TGF-beta 1 mediates the following sequential events in L929 cells: i) rapid induction of protein tyrosine-phosphorylation (< 30 min), ii) stimulation of protective protein synthesis and acquisition of TNF resistance (approximately 0.5-1 h), and iii) suppression of I kappa B-alpha expression (1-2 h). Two protective proteins induced by TGF-beta 1 are a 46 kDa extracellular matrix TNF-resistance triggering (TRT) protein and a putative transmembrane anti-apoptotic adhesion protein TIF2 (containing and RGD motif in the extracellular region). Both proteins enable L929 cells to resist TNF killing. Notably, testicular hyaluronidase increases TNF sensitivity in several types of cancer cells, counteracts TGF-beta-mediated TNF-resistance, and suppresses TGF-beta 1 gene expression in L929 cells in a serum-dependent manner. Moreover, hyaluronidase antagonizes TGF-beta-mediated inhibition of epithelial cell growth. Both TGF-beta and hyaluronidase are essential for the progression and invasiveness of breast, prostate and other cancers. Conceivably, a stage-dependent expression, as well as a balanced production, of these proteins is essential for cancer development and self protection against TNF cytotoxicity.

Original languageEnglish
Pages (from-to)653-659
Number of pages7
JournalInternational journal of molecular medicine
Volume2
Issue number6
Publication statusPublished - 1998 Jan 1

Fingerprint

Hyaluronoglucosaminidase
Cytoprotection
Transforming Growth Factor beta
Tumor Necrosis Factor-alpha
Neoplasms
Proteins
I-kappa B Proteins
Apoptosis Regulatory Proteins
Extracellular Matrix
Tyrosine
Prostatic Neoplasms
Protein Isoforms
Breast
Fibroblasts
Epithelial Cells
Phosphorylation
Gene Expression
Growth
Serum

All Science Journal Classification (ASJC) codes

  • Genetics

Cite this

@article{6ba7c52fce9d4bf3bdb36abe457fecae,
title = "Transforming growth factor-beta protection of cancer cells against tumor necrosis factor cytotoxicity is counteracted by hyaluronidase (review).",
abstract = "Numerous cancer cells, when exposed to transforming growth factor beta (TGF-beta), become resistant to tumor necrosis factor (TNF) cytotoxicity. Pretreatment of L929 fibroblasts, for example, with TGF-beta isoforms (beta 1, beta 2 and beta 3) for at least 0.5-1 h results in resistance to TNF killing. TGF-beta 1 mediates the following sequential events in L929 cells: i) rapid induction of protein tyrosine-phosphorylation (< 30 min), ii) stimulation of protective protein synthesis and acquisition of TNF resistance (approximately 0.5-1 h), and iii) suppression of I kappa B-alpha expression (1-2 h). Two protective proteins induced by TGF-beta 1 are a 46 kDa extracellular matrix TNF-resistance triggering (TRT) protein and a putative transmembrane anti-apoptotic adhesion protein TIF2 (containing and RGD motif in the extracellular region). Both proteins enable L929 cells to resist TNF killing. Notably, testicular hyaluronidase increases TNF sensitivity in several types of cancer cells, counteracts TGF-beta-mediated TNF-resistance, and suppresses TGF-beta 1 gene expression in L929 cells in a serum-dependent manner. Moreover, hyaluronidase antagonizes TGF-beta-mediated inhibition of epithelial cell growth. Both TGF-beta and hyaluronidase are essential for the progression and invasiveness of breast, prostate and other cancers. Conceivably, a stage-dependent expression, as well as a balanced production, of these proteins is essential for cancer development and self protection against TNF cytotoxicity.",
author = "Nan-Shan Chang",
year = "1998",
month = "1",
day = "1",
language = "English",
volume = "2",
pages = "653--659",
journal = "International Journal of Molecular Medicine",
issn = "1107-3756",
publisher = "Spandidos Publications",
number = "6",

}

TY - JOUR

T1 - Transforming growth factor-beta protection of cancer cells against tumor necrosis factor cytotoxicity is counteracted by hyaluronidase (review).

AU - Chang, Nan-Shan

PY - 1998/1/1

Y1 - 1998/1/1

N2 - Numerous cancer cells, when exposed to transforming growth factor beta (TGF-beta), become resistant to tumor necrosis factor (TNF) cytotoxicity. Pretreatment of L929 fibroblasts, for example, with TGF-beta isoforms (beta 1, beta 2 and beta 3) for at least 0.5-1 h results in resistance to TNF killing. TGF-beta 1 mediates the following sequential events in L929 cells: i) rapid induction of protein tyrosine-phosphorylation (< 30 min), ii) stimulation of protective protein synthesis and acquisition of TNF resistance (approximately 0.5-1 h), and iii) suppression of I kappa B-alpha expression (1-2 h). Two protective proteins induced by TGF-beta 1 are a 46 kDa extracellular matrix TNF-resistance triggering (TRT) protein and a putative transmembrane anti-apoptotic adhesion protein TIF2 (containing and RGD motif in the extracellular region). Both proteins enable L929 cells to resist TNF killing. Notably, testicular hyaluronidase increases TNF sensitivity in several types of cancer cells, counteracts TGF-beta-mediated TNF-resistance, and suppresses TGF-beta 1 gene expression in L929 cells in a serum-dependent manner. Moreover, hyaluronidase antagonizes TGF-beta-mediated inhibition of epithelial cell growth. Both TGF-beta and hyaluronidase are essential for the progression and invasiveness of breast, prostate and other cancers. Conceivably, a stage-dependent expression, as well as a balanced production, of these proteins is essential for cancer development and self protection against TNF cytotoxicity.

AB - Numerous cancer cells, when exposed to transforming growth factor beta (TGF-beta), become resistant to tumor necrosis factor (TNF) cytotoxicity. Pretreatment of L929 fibroblasts, for example, with TGF-beta isoforms (beta 1, beta 2 and beta 3) for at least 0.5-1 h results in resistance to TNF killing. TGF-beta 1 mediates the following sequential events in L929 cells: i) rapid induction of protein tyrosine-phosphorylation (< 30 min), ii) stimulation of protective protein synthesis and acquisition of TNF resistance (approximately 0.5-1 h), and iii) suppression of I kappa B-alpha expression (1-2 h). Two protective proteins induced by TGF-beta 1 are a 46 kDa extracellular matrix TNF-resistance triggering (TRT) protein and a putative transmembrane anti-apoptotic adhesion protein TIF2 (containing and RGD motif in the extracellular region). Both proteins enable L929 cells to resist TNF killing. Notably, testicular hyaluronidase increases TNF sensitivity in several types of cancer cells, counteracts TGF-beta-mediated TNF-resistance, and suppresses TGF-beta 1 gene expression in L929 cells in a serum-dependent manner. Moreover, hyaluronidase antagonizes TGF-beta-mediated inhibition of epithelial cell growth. Both TGF-beta and hyaluronidase are essential for the progression and invasiveness of breast, prostate and other cancers. Conceivably, a stage-dependent expression, as well as a balanced production, of these proteins is essential for cancer development and self protection against TNF cytotoxicity.

UR - http://www.scopus.com/inward/record.url?scp=0032251855&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032251855&partnerID=8YFLogxK

M3 - Review article

VL - 2

SP - 653

EP - 659

JO - International Journal of Molecular Medicine

JF - International Journal of Molecular Medicine

SN - 1107-3756

IS - 6

ER -