Transient wave analysis of a cantilever Timoshenko beam subjected to impact loading by Laplace transform and normal mode methods

Yu Chi Su, Chien Ching Ma

Research output: Contribution to journalArticle

24 Citations (Scopus)

Abstract

This study applies two analytical approaches, Laplace transform and normal mode methods, to investigate the dynamic transient response of a cantilever Timoshenko beam subjected to impact forces. Explicit solutions for the normal mode method and the Laplace transform method are presented. The Durbin method is used to perform the Laplace inverse transformation, and numerical results based on these two approaches are compared. The comparison indicates that the normal mode method is more efficient than the Laplace transform method in the transient response analysis of a cantilever Timoshenko beam, whereas the Laplace transform method is more appropriate than the normal mode method when analyzing the complicated multi-span Timoshenko beam. Furthermore, a three-dimensional finite element cantilever beam model is implemented. The results are compared with the transient responses for displacement, normal stress, shear stress, and the resonant frequencies of a Timoshenko beam and Bernoulli-Euler beam theories. The transient displacement response for a cantilever beam can be appropriately evaluated using the Timoshenko beam theory if the slender ratio is greater than 10 or using the Bernoulli-Euler beam theory if the slender ratio is greater than 100. Moreover, the resonant frequency of a cantilever beam can be accurately determined by the Timoshenko beam theory if the slender ratio is greater than 100 or by the Bernoulli-Euler beam theory if the slender ratio is greater than 400.

Original languageEnglish
Pages (from-to)1158-1176
Number of pages19
JournalInternational Journal of Solids and Structures
Volume49
Issue number9
DOIs
Publication statusPublished - 2012 May 1

All Science Journal Classification (ASJC) codes

  • Modelling and Simulation
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Transient wave analysis of a cantilever Timoshenko beam subjected to impact loading by Laplace transform and normal mode methods'. Together they form a unique fingerprint.

  • Cite this