Tsukuba BB: A branch and bound algorithm for local multiple alignment of DNA and protein sequences

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)


In this paper we present a branch and bound algorithm for local gapless multiple sequence alignment (motif alignment) and its implementation. The algorithm uses both score-based bounding and a novel bounding technique based on the "consistency" of the alignment. A sequence order independent search tree is used in conjunction with a technique for avoiding redundant calculations inherent in the structure of the tree. This is the first program to exploit the fact that the motif alignment problem is easier for short motifs. Indeed, for a short fixed motif width, the running time of the algorithm is asymptotically linear in the size of the input. We tested the performance of the program on a dataset of 300 E. coli promoter sequences and a dataset of 85 lipocalin protein sequences. For a motif width of 4, the optimal alignment of the entire set of sequences can be found. For the more natural motif width of 6, the program can align 21 sequences of length 100, more than twice the number of sequences which can be aligned by the best previous exact algorithm. The algorithm can relax the constraint of requiring each sequence to be aligned, and align 105 of the 300 promoter sequences with a motif width of 6. For the lipocalin dataset, we introduce a technique for reducing the effective alphabet size with a minimal loss of useful information. With this technique, we show that the program can find meaningful motifs in a reasonable amount of time by optimizing the score over three motif positions.

Original languageEnglish
Pages (from-to)283-303
Number of pages21
JournalJournal of Computational Biology
Issue number3
Publication statusPublished - 2001 Oct 10

All Science Journal Classification (ASJC) codes

  • Modelling and Simulation
  • Molecular Biology
  • Genetics
  • Computational Mathematics
  • Computational Theory and Mathematics


Dive into the research topics of 'Tsukuba BB: A branch and bound algorithm for local multiple alignment of DNA and protein sequences'. Together they form a unique fingerprint.

Cite this