TY - GEN
T1 - Tunability of Acoustic and Mechanical Behaviors in Breast Tissue Mimicking Materials
AU - Ng, S. Y.
AU - Lin, C. L.
N1 - Funding Information:
Research supported by the Ministry of Science and Technology, Taiwan.
Publisher Copyright:
© 2019 IEEE.
PY - 2019/7
Y1 - 2019/7
N2 - In radiology practices, the ultrasound-guided breast biopsy is among the most commonly performed minimally invasive procedures. However, many radiology residents in their graduate residencies are found with little or no hands-on experience with ultrasound-guided breast procedures. To enhance safety, the problem can be solved by the use of anthropomorphic training phantoms which can provide the resident with realistic ultrasound imaging and needle insertion haptic feedback. Stiffness and acoustic properties of breast tissues vary between different people. The training breast phantom should be able to possess different acoustic and mechanical properties which conform the inconsistencies found in real tissues among people. Therefore, this paper investigates the tunability of acoustic and mechanical behaviors in breast tissue mimicking materials (TMMs). Experiments of central composite design (CCD) with a center point, four corner points, and an additional four axis points were used to fit the non-linear regression model of the speed of sound. The same design of experiment approach was then used to fit the second-order response surface of the attenuation coefficient. Suitable series of tissue mimicking materials for the glandular tissue and malignant lesion were suggested. Latin hypercube design method was conducted to evaluate the main factors that affected the mechanical property (Young's modulus) of tissue mimicking materials. The results showed that the recipe of tissue mimicking materials could be customized to possess different acoustic and mechanical properties which conform the inconsistencies found in real breast tissues.
AB - In radiology practices, the ultrasound-guided breast biopsy is among the most commonly performed minimally invasive procedures. However, many radiology residents in their graduate residencies are found with little or no hands-on experience with ultrasound-guided breast procedures. To enhance safety, the problem can be solved by the use of anthropomorphic training phantoms which can provide the resident with realistic ultrasound imaging and needle insertion haptic feedback. Stiffness and acoustic properties of breast tissues vary between different people. The training breast phantom should be able to possess different acoustic and mechanical properties which conform the inconsistencies found in real tissues among people. Therefore, this paper investigates the tunability of acoustic and mechanical behaviors in breast tissue mimicking materials (TMMs). Experiments of central composite design (CCD) with a center point, four corner points, and an additional four axis points were used to fit the non-linear regression model of the speed of sound. The same design of experiment approach was then used to fit the second-order response surface of the attenuation coefficient. Suitable series of tissue mimicking materials for the glandular tissue and malignant lesion were suggested. Latin hypercube design method was conducted to evaluate the main factors that affected the mechanical property (Young's modulus) of tissue mimicking materials. The results showed that the recipe of tissue mimicking materials could be customized to possess different acoustic and mechanical properties which conform the inconsistencies found in real breast tissues.
UR - http://www.scopus.com/inward/record.url?scp=85077868593&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077868593&partnerID=8YFLogxK
U2 - 10.1109/EMBC.2019.8857843
DO - 10.1109/EMBC.2019.8857843
M3 - Conference contribution
C2 - 31946292
AN - SCOPUS:85077868593
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 1998
EP - 2002
BT - 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
Y2 - 23 July 2019 through 27 July 2019
ER -