Underwater hyperspectral target detection with band selection

Xianping Fu, Xiaodi Shang, Xudong Sun, Haoyang Yu, Meiping Song, Chein I. Chang

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)


Compared to multi-spectral imagery, hyperspectral imagery has very high spectral resolution with abundant spectral information. In underwater target detection, hyperspectral technology can be advantageous in the sense of a poor underwater imaging environment, complex background, or protective mechanism of aquatic organisms. Due to high data redundancy, slow imaging speed, and long processing of hyperspectral imagery, a direct use of hyperspectral images in detecting targets cannot meet the needs of rapid detection of underwater targets. To resolve this issue, a fast, hyperspectral underwater target detection approach using band selection (BS) is proposed. It first develops a constrained-target optimal index factor (OIF) band selection (CTOIFBS) to select a band subset with spectral wavelengths specifically responding to the targets of interest. Then, an underwater spectral imaging system integrated with the best-selected band subset is constructed for underwater target image acquisition. Finally, a constrained energy minimization (CEM) target detection algorithm is used to detect the desired underwater targets. Experimental results demonstrate that the band subset selected by CTOIFBS is more effective in detecting underwater targets compared to the other three existing BS methods, uniform band selection (UBS), minimum variance band priority (MinV-BP), and minimum variance band priority with OIF (MinV-BP-OIF). In addition, the results also show that the acquisition and detection speed of the designed underwater spectral acquisition system using CTOIFBS can be significantly improved over the original underwater hyperspectral image system without BS.

Original languageEnglish
Article number1056
JournalRemote Sensing
Issue number7
Publication statusPublished - 2020 Apr 1

All Science Journal Classification (ASJC) codes

  • General Earth and Planetary Sciences


Dive into the research topics of 'Underwater hyperspectral target detection with band selection'. Together they form a unique fingerprint.

Cite this