Underwater Sound Source Localization Based on Passive Time-Reversal Mirror and Ray Theory

Kuan Wen Liu, Ching Jer Huang, Gee Pinn Too, Zong You Shen, Yung Da Sun

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


This study investigates the performance of a passive time-reversal mirror (TRM) combined with acoustic ray theory in localizing underwater sound sources with high frequencies (3–7 kHz). The TRM was installed on a floating buoy and comprised four hydrophones. The ray-tracing code BELLHOP was used to determine the transfer function between a sound source and a field point. The transfer function in the frequency domain obtained from BELLHOP was transformed into the time domain. The pressure field was then obtained by taking the convolution of the transfer function in the time domain with the time-reversed signals that were received by the hydrophones in the TRM. The location with the maximum pressure value was designated as the location of the source. The performance of the proposed methodology for source localization was tested in a towing tank and in the ocean. The aforementioned tests revealed that even when the distances between a source and the TRM were up to 1600 m, the distance deviations between estimated and actual source locations were mostly less than 2 m. Errors originated mainly from inaccurate depth estimation, and the literature indicates that they can be reduced by increasing the number of TRM elements and their apertures.

Original languageEnglish
Article number2420
Issue number6
Publication statusPublished - 2022 Mar 1

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry
  • Information Systems
  • Biochemistry
  • Atomic and Molecular Physics, and Optics
  • Instrumentation
  • Electrical and Electronic Engineering


Dive into the research topics of 'Underwater Sound Source Localization Based on Passive Time-Reversal Mirror and Ray Theory'. Together they form a unique fingerprint.

Cite this