TY - JOUR
T1 - Unlocking Catalytic Potential
T2 - Exploring the Impact of Thermal Treatment on Enhanced Electrocatalysis of Nanomaterials
AU - Kogularasu, Sakthivel
AU - Lee, Yen Yi
AU - Sriram, Balasubramanian
AU - Wang, Sea Fue
AU - George, Mary
AU - Chang-Chien, Guo Ping
AU - Sheu, Jinn Kong
N1 - Publisher Copyright:
© 2023 Wiley-VCH GmbH.
PY - 2024/1/2
Y1 - 2024/1/2
N2 - In the evolving field of electrocatalysis, thermal treatment of nano-electrocatalysts has become an essential strategy for performance enhancement. This review systematically investigates the impact of various thermal treatments on the catalytic potential of nano-electrocatalysts. The focus encompasses an in-depth analysis of the changes induced in structural, morphological, and compositional properties, as well as alterations in electro-active surface area, surface chemistry, and crystal defects. By providing a comprehensive comparison of commonly used thermal techniques, such as annealing, calcination, sintering, pyrolysis, hydrothermal, and solvothermal methods, this review serves as a scientific guide for selecting the right thermal technique and favorable temperature to tailor the nano-electrocatalysts for optimal electrocatalysis. The resultant modifications in catalytic activity are explored across key electrochemical reactions such as electrochemical (bio)sensing, catalytic degradation, oxygen reduction reaction, hydrogen evolution reaction, overall water splitting, fuel cells, and carbon dioxide reduction reaction. Through a detailed examination of the underlying mechanisms and synergistic effects, this review contributes to a fundamental understanding of the role of thermal treatments in enhancing electrocatalytic properties. The insights provided offer a roadmap for future research aimed at optimizing the electrocatalytic performance of nanomaterials, fostering the development of next-generation sensors and energy conversion technologies.
AB - In the evolving field of electrocatalysis, thermal treatment of nano-electrocatalysts has become an essential strategy for performance enhancement. This review systematically investigates the impact of various thermal treatments on the catalytic potential of nano-electrocatalysts. The focus encompasses an in-depth analysis of the changes induced in structural, morphological, and compositional properties, as well as alterations in electro-active surface area, surface chemistry, and crystal defects. By providing a comprehensive comparison of commonly used thermal techniques, such as annealing, calcination, sintering, pyrolysis, hydrothermal, and solvothermal methods, this review serves as a scientific guide for selecting the right thermal technique and favorable temperature to tailor the nano-electrocatalysts for optimal electrocatalysis. The resultant modifications in catalytic activity are explored across key electrochemical reactions such as electrochemical (bio)sensing, catalytic degradation, oxygen reduction reaction, hydrogen evolution reaction, overall water splitting, fuel cells, and carbon dioxide reduction reaction. Through a detailed examination of the underlying mechanisms and synergistic effects, this review contributes to a fundamental understanding of the role of thermal treatments in enhancing electrocatalytic properties. The insights provided offer a roadmap for future research aimed at optimizing the electrocatalytic performance of nanomaterials, fostering the development of next-generation sensors and energy conversion technologies.
UR - http://www.scopus.com/inward/record.url?scp=85173684995&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85173684995&partnerID=8YFLogxK
U2 - 10.1002/anie.202311806
DO - 10.1002/anie.202311806
M3 - Review article
C2 - 37773568
AN - SCOPUS:85173684995
SN - 1433-7851
VL - 63
JO - Angewandte Chemie - International Edition
JF - Angewandte Chemie - International Edition
IS - 1
M1 - e202311806
ER -