Abstract
Fisher's linear discriminant analysis (FLDA) has been widely used in pattern classification due to its criterion, called Fisher's ratio, based on the ratio of between-class variance to within-class variance. Recently, a linear constrained discriminant analysis (LCDA) was developed for hyperspectral image classification where Fisher's ratio was replaced with the ratio of inter-distance to intra-distance and the target signatures were constrained to orthogonal directions. This paper directly extends the FLDA to constrained Fisher's linear discriminant analysis (CFLDA), which uses Fisher's ratio as a classification criterion. Since CFLDA is supervised which requires a set of training samples, this paper further extends the CFLDA to an unsupervised CFLDA (UCFLDA) by including a new unsupervised training sample generation algorithm to automatically produce a sample pool of training data to be used for CFLDA. In order to determine the number of classes, p, to be classified, a newly developed concept, called virtual dimensionality (VD) is used to estimate the p where a Neyman-Pearson-based eigen-analysis approach developed by Harsanyi, Farrand and Chang, called noise-whitened HFC (NWHFC)'s method, is implemented to find the VD. The experimental results have shown that the proposed UCFLDA perform effectively for HYDICE data and provides a promising unsupervised classification technique for hyperspectral imagery.
Original language | English |
---|---|
Article number | 45 |
Pages (from-to) | 344-353 |
Number of pages | 10 |
Journal | Proceedings of SPIE - The International Society for Optical Engineering |
Volume | 5546 |
DOIs | |
Publication status | Published - 2004 |
Event | Imaging Spectrometry X - Denver, CO, United States Duration: 2004 Aug 2 → 2004 Aug 4 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Computer Science Applications
- Applied Mathematics
- Electrical and Electronic Engineering