TY - JOUR
T1 - Use of the Gaussian hypergeometric function to solve the equation of gradually-varied flow
AU - Jan, Chyan Deng
AU - Chen, Cheng lung
PY - 2012/8/16
Y1 - 2012/8/16
N2 - The direct-integration method is a conventional method used to analytically solve the equation of gradually-varied flow (GVF) that is a steady non-uniform flow in an open channel with gradually changes in its water surface elevation. The GVF equation is normalized by using the normal depth h n. The varied-flow function (VFF) needed in the direct-integration method has a drawback caused by the imprecise interpolation of the VFF-values. To overcome the drawback, we successfully use the Gaussian hypergeometric function (GHF) to analytically solve the GVF equation without recourse to the VFF in the present paper. The GHF-based solutions can henceforth play the role of the VFF table in the interpolation of the VFF-values. We plot the GHF-based solutions for GVF profiles in the mild (M), critical (C), and steep (S) wide channels under specific boundary conditions, thereby analyzing the effects of the dimensionless critical depth h c/. h n and the hydraulic exponent N-value on the profiles.
AB - The direct-integration method is a conventional method used to analytically solve the equation of gradually-varied flow (GVF) that is a steady non-uniform flow in an open channel with gradually changes in its water surface elevation. The GVF equation is normalized by using the normal depth h n. The varied-flow function (VFF) needed in the direct-integration method has a drawback caused by the imprecise interpolation of the VFF-values. To overcome the drawback, we successfully use the Gaussian hypergeometric function (GHF) to analytically solve the GVF equation without recourse to the VFF in the present paper. The GHF-based solutions can henceforth play the role of the VFF table in the interpolation of the VFF-values. We plot the GHF-based solutions for GVF profiles in the mild (M), critical (C), and steep (S) wide channels under specific boundary conditions, thereby analyzing the effects of the dimensionless critical depth h c/. h n and the hydraulic exponent N-value on the profiles.
UR - http://www.scopus.com/inward/record.url?scp=84864361625&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84864361625&partnerID=8YFLogxK
U2 - 10.1016/j.jhydrol.2012.06.023
DO - 10.1016/j.jhydrol.2012.06.023
M3 - Article
AN - SCOPUS:84864361625
SN - 0022-1694
VL - 456-457
SP - 139
EP - 145
JO - Journal of Hydrology
JF - Journal of Hydrology
ER -