Using a fuzzy engine and complete set of features for hepatic diseases diagnosis: Integrating contrast and non-contrast CT images

E. L. Chen, Y. N. Chung, P. C. Chung, H. M. Tsai, Y. S. Huang

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

In the diagnosis of hepatic diseases, "Contrast-Enhanced Computerized Tomography" (CECT) and "Non-Contrast CT" (NCT) are usually simultaneously adopted. In this paper, a system consisting of a fuzzy diagnosis engine and a feature quantizer, which extracts hepatic features from CECT and NCT images is proposed for assisting hepatic disease diagnosis. Compared with existing methods this paper differs in two folds. First a more complete features set composed of not only lesion textures, but also lesion morphological structure and lesion contrast to normal tissues is used. These features are described through mathematical models built inside the feature quantizer and served as the input of fuzzy diagnosis engine. Second, because of the use of the fuzzy diagnosis engine, the system is intrinsically with the capability of storing rules and may infer and adapt its rules according to learning data. Furthermore, uncertainty associated with disease diagnosis can be appropriately taken into considerations. The system has been tested using 131 sets of image data, which are to be classified into 4 types of diseases: liver cyst, hepatoma, cavernous hemagioma and metastatic liver tumor. Experimental results indicate that among these test data 78% of them are accurately classified as one type, while the remaining 22% of data are classified as more than one types of diseases. Even so, within these 22% of multiple-classified data, the correct type is always included in the output in each test, showing a promise of the system.

Original languageEnglish
Pages (from-to)159-167
Number of pages9
JournalBiomedical Engineering - Applications, Basis and Communications
Volume13
Issue number4
DOIs
Publication statusPublished - 2001 Aug 25

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Bioengineering
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Using a fuzzy engine and complete set of features for hepatic diseases diagnosis: Integrating contrast and non-contrast CT images'. Together they form a unique fingerprint.

Cite this