TY - JOUR
T1 - Using a kernel density estimation based classifier to predict species-specific microRNA precursors
AU - Chang, Darby Tien Hao
AU - Wang, Chih Ching
AU - Chen, Jian Wei
N1 - Funding Information:
The authors would like to thank the National Science Council of the Republic of China, Taiwan, for financially supporting this research under Contract Nos NSC 97-2627-P-001-002, NSC 96-2320-B-006-027-MY2 and NSC 96-2221-E-006-232-MY2.
PY - 2008/12/12
Y1 - 2008/12/12
N2 - Background: MicroRNAs (miRNAs) are short non-coding RNA molecules participating in post-transcriptional regulation of gene expression. There have been many efforts to discover miRNA precursors (pre-miRNAs) over the years. Recently, ab initio approaches obtain more attention because that they can discover species-specific pre-miRNAs. Most ab initio approaches proposed novel features to characterize RNA molecules. However, there were fewer discussions on the associated classification mechanism in a miRNA predictor. Results: This study focuses on the classification algorithm for miRNA prediction. We develop a novel ab initio method, miR-KDE, in which most of the features are collected from previous works. The classification mechanism in miR-KDE is the relaxed variable kernel density estimator (RVKDE) that we have recently proposed. When compared to the famous support vector machine (SVM), RVKDE exploits more local information of the training dataset. MiR-KDE is evaluated using a training set consisted of only human pre-miRNAs to predict a benchmark collected from 40 species. The experimental results show that miR-KDE delivers favorable performance in predicting human pre-miRNAs and has advantages for pre-miRNAs from the genera taxonomically distant to humans. Conclusion: We use a novel classifier of which the characteristic of exploiting local information is particularly suitable to predict species-specific pre-miRNAs. This study also provides a comprehensive analysis from the view of classification mechanism. The good performance of miR-KDE encourages more efforts on the classification methodology as well as the feature extraction in miRNA prediction.
AB - Background: MicroRNAs (miRNAs) are short non-coding RNA molecules participating in post-transcriptional regulation of gene expression. There have been many efforts to discover miRNA precursors (pre-miRNAs) over the years. Recently, ab initio approaches obtain more attention because that they can discover species-specific pre-miRNAs. Most ab initio approaches proposed novel features to characterize RNA molecules. However, there were fewer discussions on the associated classification mechanism in a miRNA predictor. Results: This study focuses on the classification algorithm for miRNA prediction. We develop a novel ab initio method, miR-KDE, in which most of the features are collected from previous works. The classification mechanism in miR-KDE is the relaxed variable kernel density estimator (RVKDE) that we have recently proposed. When compared to the famous support vector machine (SVM), RVKDE exploits more local information of the training dataset. MiR-KDE is evaluated using a training set consisted of only human pre-miRNAs to predict a benchmark collected from 40 species. The experimental results show that miR-KDE delivers favorable performance in predicting human pre-miRNAs and has advantages for pre-miRNAs from the genera taxonomically distant to humans. Conclusion: We use a novel classifier of which the characteristic of exploiting local information is particularly suitable to predict species-specific pre-miRNAs. This study also provides a comprehensive analysis from the view of classification mechanism. The good performance of miR-KDE encourages more efforts on the classification methodology as well as the feature extraction in miRNA prediction.
UR - http://www.scopus.com/inward/record.url?scp=57649207899&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=57649207899&partnerID=8YFLogxK
U2 - 10.1186/1471-2105-9-S12-S2
DO - 10.1186/1471-2105-9-S12-S2
M3 - Article
C2 - 19091019
AN - SCOPUS:57649207899
SN - 1471-2105
VL - 9
JO - BMC Bioinformatics
JF - BMC Bioinformatics
IS - SUPPL. 12
M1 - S2
ER -