USING SIMULATION TO STUDY CUTTING FORCE IN BIOPSY NEEDLE INSERTION WITH BI-DIRECTIONAL ROTATION

Chun Jung Yen, Yu An Huang, Chi Lun Lin

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

The rotational motion has been utilized in several medical needle technologies to enhance the capability of cutting tissue. The needle rotation helps significantly reduce the tissue cutting force, which improves procedure outcome and pain. However, the needle rotation can also incur tissue winding that intensifies tissue damage, which results in complications of bleeding and hematoma. Some histological observations showed that bidirectional needle rotation could reduce the tissue damage caused by tissue winding. In this study, we established a cohesive surface based finite element model to evaluate the cutting force in needle insertion with unidirectional and bidirectional rotation. The simulation results suggested that the frequency of switching direction of needle rotation insignificantly influences the cutting force. The Latin Hypercube method was used to generate a response surface of cutting force and locate the minimum at the insertion speed of 1mm/s combined with the slice/push ratio of 1.9. In clinical use, we suggested that the needle speeds can be first selected to optimize the cutting force according to the type of target tissue. If the desired needle rotation is high, a proper switching frequency can be applied to reduce the tissue winding damage without increasing the cutting force.

Original languageEnglish
Article number1940020
JournalJournal of Mechanics in Medicine and Biology
Volume19
Issue number2
DOIs
Publication statusPublished - 2019 Mar 1

All Science Journal Classification (ASJC) codes

  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'USING SIMULATION TO STUDY CUTTING FORCE IN BIOPSY NEEDLE INSERTION WITH BI-DIRECTIONAL ROTATION'. Together they form a unique fingerprint.

Cite this