V-doped, divacancy-containing β-FeOOH electrocatalyst for high performance oxygen evolution reaction

Fitri Nur Indah Sari, Hong Sheng Chen, Aswin kumar Anbalagan, Yan Jia Huang, Shu Chih Haw, Jin Ming Chen, Chih Hao Lee, Yen-Hsun Su, Jyh-Ming Ting

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


Improving the oxygen evolution reaction (OER) performance of Fe-based (oxy)hydroxides is vital for the development of cost-effective electrocatalysts. In this work, for the first time, we demonstrate that the OER activity of β-FeOOH is enhanced via V-doping and the generation of both iron and oxygen vacancies. The novel V-doped, divacancy-containing β-FeOOH is obtained in-situ through a pre-OER cyclic voltammetry activation of hydrated layered Fe5V15O39(OH)9·9H2O Various analyses reveal that the vanadium dissolution in basic electrolyte accounts for the in-situ formation of V-doping and divacancy β-FeOOH. The experiment shows that V-doping regulates the formation of oxygen vacancies, subsequently resulting in the modulation of Fe oxidation state and charge transfer characteristics. Metallic Fe in the β-FeOOH also contributes to the enhanced charge transfer. Density functional theory calculation reveals that V-doping and iron vacancy balance the adsorption and desorption of oxygen intermediate species, giving a reduced energy barrier of the rate determining step during OER. As a result, the V-doped, divacancy-containing β-FeOOH exhibits an excellent OER overpotential of 232 mV at 10 mA cm−2, high current density > 450 mA cm−2, no potential decay after 2,000 cycles, and 72 h stability, outperforming the benchmark RuO2 and the other Fe-based catalysts. A water splitting cell consisting of the β-FeOOH anode F(V)OOH and a Pt/C cathode demonstrates an excellent cell voltage of 1.51 V at 10 mA cm−2. This facile method to obtain metal doping and divacancy simultaneously leads to a new approach for further development of electrocatalysts.

Original languageEnglish
Article number135515
JournalChemical Engineering Journal
Publication statusPublished - 2022 Jun 15

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Environmental Chemistry
  • Chemical Engineering(all)
  • Industrial and Manufacturing Engineering


Dive into the research topics of 'V-doped, divacancy-containing β-FeOOH electrocatalyst for high performance oxygen evolution reaction'. Together they form a unique fingerprint.

Cite this