TY - JOUR
T1 - Valproic acid mediates the synaptic excitatory/inhibitory balance through astrocytes - A preliminary study
AU - Wang, Chao Chuan
AU - Chen, Po See
AU - Hsu, Chien Wen
AU - Wu, Shou Jung
AU - Lin, Chieh Ting
AU - Gean, Po Wu
N1 - Funding Information:
This study was supported by grants from the National Science Council of Taiwan ( NSC 96-2314-B-006-056-MY3 , NSC 99-2628-B-006-013-MY3 ) and National Cheng Kung University Hospital . The authors wish to thank Mr. Chien-Ting Lin and all of the research participants.
PY - 2012/4/27
Y1 - 2012/4/27
N2 - Valproic acid (VPA) is one of the most widely used anticonvulsant and mood-stabilizing agents for the treatment of epilepsy and bipolar disorder. However, the underlying therapeutic mechanisms of the treatment of each disease remain unclear. Recently, the anti-epileptic effect of VPA has been found to lead to modulation of the synaptic excitatory/inhibitory balance. In addition, the therapeutic action of VPA has been linked to its effect on astrocytes by regulating gene expression at the molecular level, perhaps through an epigenetic mechanism as a histone deacetylase (HDAC) inhibitor. To provide insight into the mechanisms underlying the actions of VPA, this study investigated whether the synaptic excitatory/inhibitory (E/I) balance could be mediated by VPA through astrocytes. First, using the primary rat neuronal, astroglial, and neuro-glial mixed culture systems, we demonstrated that VPA treatment could regulate the mRNA levels of two post-synaptic cell adhesion molecules(neuroligin-1 and neuregulin-1) and two extracellular matrices (neuronal pentraxin-1and thrombospondin-3) in primary rat astrocyte cultures in a time- and concentration-dependent manner. Moreover, the up-regulation effect of VPA was noted in astrocytes, but not in neurons. In addition, these regulatory effects could be mimicked by sodium butyrate, a HDAC inhibitor, but not by lithium or two other glycogen synthase kinase-3 beta inhibitors. With the known role of these four proteins in regulating the synaptic E/I balance, we further demonstrated that VPA increased excitatory post-synaptic protein (postsynaptic density 95) and inhibitory post-synaptic protein (Gephyrin) in cortical neuro-glial mixed cultures. Our results suggested that VPA might affect the synaptic excitatory/inhibitory balance through its effect on astrocytes. This work provides the basis for future evaluation of the role of astroglial cell adhesion molecules and the extracellular matrix on the control of excitatory and inhibitory synapse formation.
AB - Valproic acid (VPA) is one of the most widely used anticonvulsant and mood-stabilizing agents for the treatment of epilepsy and bipolar disorder. However, the underlying therapeutic mechanisms of the treatment of each disease remain unclear. Recently, the anti-epileptic effect of VPA has been found to lead to modulation of the synaptic excitatory/inhibitory balance. In addition, the therapeutic action of VPA has been linked to its effect on astrocytes by regulating gene expression at the molecular level, perhaps through an epigenetic mechanism as a histone deacetylase (HDAC) inhibitor. To provide insight into the mechanisms underlying the actions of VPA, this study investigated whether the synaptic excitatory/inhibitory (E/I) balance could be mediated by VPA through astrocytes. First, using the primary rat neuronal, astroglial, and neuro-glial mixed culture systems, we demonstrated that VPA treatment could regulate the mRNA levels of two post-synaptic cell adhesion molecules(neuroligin-1 and neuregulin-1) and two extracellular matrices (neuronal pentraxin-1and thrombospondin-3) in primary rat astrocyte cultures in a time- and concentration-dependent manner. Moreover, the up-regulation effect of VPA was noted in astrocytes, but not in neurons. In addition, these regulatory effects could be mimicked by sodium butyrate, a HDAC inhibitor, but not by lithium or two other glycogen synthase kinase-3 beta inhibitors. With the known role of these four proteins in regulating the synaptic E/I balance, we further demonstrated that VPA increased excitatory post-synaptic protein (postsynaptic density 95) and inhibitory post-synaptic protein (Gephyrin) in cortical neuro-glial mixed cultures. Our results suggested that VPA might affect the synaptic excitatory/inhibitory balance through its effect on astrocytes. This work provides the basis for future evaluation of the role of astroglial cell adhesion molecules and the extracellular matrix on the control of excitatory and inhibitory synapse formation.
UR - http://www.scopus.com/inward/record.url?scp=84862819963&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84862819963&partnerID=8YFLogxK
U2 - 10.1016/j.pnpbp.2012.01.017
DO - 10.1016/j.pnpbp.2012.01.017
M3 - Article
C2 - 22343008
AN - SCOPUS:84862819963
SN - 0278-5846
VL - 37
SP - 111
EP - 120
JO - Progress in Neuro-Psychopharmacology and Biological Psychiatry
JF - Progress in Neuro-Psychopharmacology and Biological Psychiatry
IS - 1
ER -