TY - JOUR
T1 - Visualization of Tunable Weyl Line in A–A Stacking Kagome Magnets
AU - Cheng, Zi Jia
AU - Belopolski, Ilya
AU - Tien, Hung Ju
AU - Cochran, Tyler A.
AU - Yang, Xian P.
AU - Ma, Wenlong
AU - Yin, Jia Xin
AU - Chen, Dong
AU - Zhang, Junyi
AU - Jozwiak, Chris
AU - Bostwick, Aaron
AU - Rotenberg, Eli
AU - Cheng, Guangming
AU - Hossain, Md Shafayat
AU - Zhang, Qi
AU - Litskevich, Maksim
AU - Jiang, Yu Xiao
AU - Yao, Nan
AU - Schroeter, Niels B.M.
AU - Strocov, Vladimir N.
AU - Lian, Biao
AU - Felser, Claudia
AU - Chang, Guoqing
AU - Jia, Shuang
AU - Chang, Tay Rong
AU - Hasan, M. Zahid
N1 - Publisher Copyright:
© 2022 Wiley-VCH GmbH.
PY - 2023/1/19
Y1 - 2023/1/19
N2 - Kagome magnets provide a fascinating platform for a plethora of topological quantum phenomena, in which the delicate interplay between frustrated crystal structure, magnetization, and spin–orbit coupling (SOC) can engender highly tunable topological states. Here, utilizing angle-resolved photoemission spectroscopy, the Weyl lines are directly visualized with strong out-of-plane dispersion in the A–A stacked kagome magnet GdMn6Sn6. Remarkably, the Weyl lines exhibit a strong magnetization-direction-tunable SOC gap and binding energy tunability after substituting Gd with Tb and Li, respectively. These results not only illustrate the magnetization direction and valence counting as efficient tuning knobs for realizing and controlling distinct 3D topological phases, but also demonstrate AMn6Sn6 (A = rare earth, or Li, Mg, or Ca) as a versatile material family for exploring diverse emergent topological quantum responses.
AB - Kagome magnets provide a fascinating platform for a plethora of topological quantum phenomena, in which the delicate interplay between frustrated crystal structure, magnetization, and spin–orbit coupling (SOC) can engender highly tunable topological states. Here, utilizing angle-resolved photoemission spectroscopy, the Weyl lines are directly visualized with strong out-of-plane dispersion in the A–A stacked kagome magnet GdMn6Sn6. Remarkably, the Weyl lines exhibit a strong magnetization-direction-tunable SOC gap and binding energy tunability after substituting Gd with Tb and Li, respectively. These results not only illustrate the magnetization direction and valence counting as efficient tuning knobs for realizing and controlling distinct 3D topological phases, but also demonstrate AMn6Sn6 (A = rare earth, or Li, Mg, or Ca) as a versatile material family for exploring diverse emergent topological quantum responses.
UR - http://www.scopus.com/inward/record.url?scp=85144102680&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85144102680&partnerID=8YFLogxK
U2 - 10.1002/adma.202205927
DO - 10.1002/adma.202205927
M3 - Article
AN - SCOPUS:85144102680
SN - 0935-9648
VL - 35
JO - Advanced Materials
JF - Advanced Materials
IS - 3
M1 - 2205927
ER -