Vitamin D attenuates loss of endothelial biomarker expression in cardio-endothelial cells

Chi Cheng Lai, Wang Chuan Juang, Gwo Ching Sun, Yu Kai Tseng, Rong Chang Jhong, Ching Jiunn Tseng, Tzyy Yue Wong, Pei Wen Cheng

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Vitamin D is associated with cardiovascular health through activating the vitamin D receptor that targets genes related to cardiovascular disease (CVD). The human cardiac microvascular endothelial cells (HCMECs) were used to develop mechanically and TGF-β1-induced fibrosis models, and the rat was used as the isoproterenol (ISO)-induced fibrosis model. The rats were injected with ISO for the first five days, followed by vitamin D injection for the consecutive three weeks before being sacrificed on the fourth week. Results showed that mechanical stretching reduced endothelial cell marker CD31 and VE-cadherin protein expressions, as well as increased α-smooth muscle actin (α-SMA) and fibronectin (FN). The transforming growth factor-β1 (TGF-β1) reduced CD31, and increased α-SMA and FN protein expression levels. Vitamin D presence led to higher protein expression of CD31, and lower protein expressions of α-SMA and FN compared to the control in the TGF-β1-induced fibrosis model. Additionally, protein expression of VE-cadherin was increased and fibroblast-specific protein-1 (FSP1) was decreased after vitamin D treatment in the ISO-induced fibrosis rat. In conclusion, vitamin D slightly inhibited fibrosis development in cell and animal models. Based on this study, the beneficial effect of vitamin D may be insignificant; however, further investigation of vitamin D’s effect in the long-term is required in the future.

Original languageEnglish
Article number2196
JournalInternational journal of molecular sciences
Volume21
Issue number6
DOIs
Publication statusPublished - 2020 Mar 2

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint Dive into the research topics of 'Vitamin D attenuates loss of endothelial biomarker expression in cardio-endothelial cells'. Together they form a unique fingerprint.

Cite this