TY - JOUR
T1 - VM aware journaling
T2 - Improving journaling file system performance in virtualization environments
AU - Huang, Ting Chang
AU - Chang, Da Wei
N1 - Copyright:
Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2012/3
Y1 - 2012/3
N2 - Journaling file systems, which are widely used in modern operating systems, guarantee file system consistency and data integrity by logging file system updates to a journal, which is a reserved space on the storage, before the updates are written to the data storage. Such journal writes increase the write traffic to the storage and thus degrade the file system performance, especially in full data journaling, which logs both metadata and data updates. In this paper, a new journaling approach is proposed to eliminate journal writes in server virtualization environments, which are gaining in popularity in server platforms. Based on reliable hardware subsystems and virtual machine monitor (VMM), the proposed approach eliminates journal writes by retaining journal data (i.e. logged file system updates) in the memory of each virtual machine and ensuring the integrity of these journal data through cooperation between the journaling file systems and the VMM. We implement the proposed approach in Linux ext3 in the Xen virtualization environment. According to the performance results, a performance improvement of up to 50.9journaling approach of ext3 due to journal write elimination. In metadata-write dominated workloads, this approach could even outperform the metadata journaling approaches of ext3, which do not guarantee data integrity. These results demonstrate that, on virtual servers with reliable VMM and hardware subsystems, the proposed approach is an effective alternative to traditional journaling approaches.
AB - Journaling file systems, which are widely used in modern operating systems, guarantee file system consistency and data integrity by logging file system updates to a journal, which is a reserved space on the storage, before the updates are written to the data storage. Such journal writes increase the write traffic to the storage and thus degrade the file system performance, especially in full data journaling, which logs both metadata and data updates. In this paper, a new journaling approach is proposed to eliminate journal writes in server virtualization environments, which are gaining in popularity in server platforms. Based on reliable hardware subsystems and virtual machine monitor (VMM), the proposed approach eliminates journal writes by retaining journal data (i.e. logged file system updates) in the memory of each virtual machine and ensuring the integrity of these journal data through cooperation between the journaling file systems and the VMM. We implement the proposed approach in Linux ext3 in the Xen virtualization environment. According to the performance results, a performance improvement of up to 50.9journaling approach of ext3 due to journal write elimination. In metadata-write dominated workloads, this approach could even outperform the metadata journaling approaches of ext3, which do not guarantee data integrity. These results demonstrate that, on virtual servers with reliable VMM and hardware subsystems, the proposed approach is an effective alternative to traditional journaling approaches.
UR - http://www.scopus.com/inward/record.url?scp=84857037904&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84857037904&partnerID=8YFLogxK
U2 - 10.1002/spe.1069
DO - 10.1002/spe.1069
M3 - Article
AN - SCOPUS:84857037904
SN - 0038-0644
VL - 42
SP - 303
EP - 330
JO - Software - Practice and Experience
JF - Software - Practice and Experience
IS - 3
ER -