Wafer-scale plasmonic and photonic crystal sensors

M. C. George, J. N. Liu, A. Farhang, B. Williamson, M. Black, T. Wangensteen, J. Fraser, R. Petrova, B. T. Cunningham

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

200 mm diameter wafer-scale fabrication, metrology, and optical modeling results are reviewed for surface plasmon resonance (SPR) sensors based on 2-D metallic nano-dome and nano-hole arrays (NHA's) as well as 1-D photonic crystal sensors based on a leaky-waveguide mode resonance effect, with potential applications in label free sensing, surface enhanced Raman spectroscopy (SERS), and surface-enhanced fluorescence spectroscopy (SEFS). Potential markets include micro-arrays for medical diagnostics, forensic testing, environmental monitoring, and food safety. 1-D and 2-D nanostructures were fabricated on glass, fused silica, and silicon wafers using optical lithography and semiconductor processing techniques. Wafer-scale optical metrology results are compared to FDTD modeling and presented along with application-based performance results, including label-free plasmonic and photonic crystal sensing of both surface binding kinetics and bulk refractive index changes. In addition, SEFS and SERS results are presented for 1-D photonic crystal and 2-D metallic nano-array structures. Normal incidence transmittance results for a 550 nm pitch NHA showed good bulk refractive index sensitivity, however an intensity-based design with 665 nm pitch was chosen for use as a compact, label-free sensor at both 650 and 632.8 nm wavelengths. The optimized NHA sensor gives an SPR shift of about 480 nm per refractive index unit when detecting a series of 0-40% glucose solutions, but according to modeling shows about 10 times greater surface sensitivity when operating at 532 nm. Narrow-band photonic crystal resonance sensors showed quality factors over 200, with reasonable wafer-uniformity in terms of both resonance position and peak height.

Original languageEnglish
Title of host publicationPlasmonics
Subtitle of host publicationMetallic Nanostructures and Their Optical Properties XIII
EditorsDin Ping Tsai, Allan D. Boardman
PublisherSPIE
ISBN (Electronic)9781628417135
DOIs
Publication statusPublished - 2015
EventPlasmonics: Metallic Nanostructures and Their Optical Properties XIII - San Diego, United States
Duration: 2015 Aug 92015 Aug 13

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume9547
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Other

OtherPlasmonics: Metallic Nanostructures and Their Optical Properties XIII
Country/TerritoryUnited States
CitySan Diego
Period15-08-0915-08-13

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Wafer-scale plasmonic and photonic crystal sensors'. Together they form a unique fingerprint.

Cite this