Waste cold energy recovery from liquefied natural gas (LNG) regasification including pressure and thermal energy

Si Le, Jui Yuan Lee, Cheng Liang Chen

Research output: Contribution to journalArticlepeer-review

68 Citations (Scopus)

Abstract

The world has been concentrating on waste heat recovery for several decades. The attention has recently been turned to waste energy in cold streams. This work focuses on the recovery of waste cold energy released from the Liquefied Natural Gas (LNG) regasification process, including pressure energy and thermal energy. A direct expansion configuration involving different steps of expansion and mass flow rate extraction at intermediate pressure levels is adopted in the mathematical models for pressure energy recovery. A direct-configuration organic Rankine cycle (ORC) is employed subsequently to recover residual cold energy. An equation of state for methane (the main component of LNG) is used to estimate the thermodynamic properties of LNG in a long-range phase transition of the regasification process. The modified Peng-Robinson (PR) and the Soave-Redlich-Kwong (SRK) equations of state are used to calculate thermodynamic properties of the ORC working fluids. All the models are developed and solved using MATLAB. By adopting propane as the ORC working fluid, the multistage expansion and thermal energy extraction can recover 215 kJ per kilogram of flowing LNG, which can generate 1.7 GWh annually for 1 kg/s LNG, with a payback period less than seven years.

Original languageEnglish
Pages (from-to)770-787
Number of pages18
JournalEnergy
Volume152
DOIs
Publication statusPublished - 2018 Jun 1

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • General Energy
  • Pollution
  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering
  • Management, Monitoring, Policy and Law
  • Industrial and Manufacturing Engineering
  • Building and Construction
  • Fuel Technology
  • Renewable Energy, Sustainability and the Environment
  • Civil and Structural Engineering
  • Modelling and Simulation

Fingerprint

Dive into the research topics of 'Waste cold energy recovery from liquefied natural gas (LNG) regasification including pressure and thermal energy'. Together they form a unique fingerprint.

Cite this