Wave propagating over poro-elastic bed

Jaw-Fang Lee, Yuan Jyh Lan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

In this study, the problem of waves propagating over poro-elastic seabed is studied. The fluid motion is described by the linear wave theory. The poro-elastic seabed is modeled by the Biot theory, and the governing equations of the sixth-order differential equations for the displacements, and the fourth-order differential equation for the pressure are used. The seabed is currently considered infinite. Interfacial boundary conditions at the seabed surface are dynamic pressure and kinematic velocity continuity. In the solution procedure, the fluid motion and the seabed response are assumed to be periodic. General solution forms for the wave motion and the poro-elastic seabed can be derived. The coefficients in the solutions can be determined from the boundary conditions, and a dispersion equation for water waves is also obtained. The present analytic model can be simplified to the ones developed by Hsu and Jeng (1994), and by Tsai (1995). The present analytic solutions compare favorably well with experimental results by Yamamoto et al (1978) for both fine and coarse sands. Using the present analytic solution, effects of the porosity and stiffness of the elastic seabed on the wavelength are studied. Energy dissipation of propagating waves over poro-elastic seabed, and pressure variation along the water depth, can be estimated.

Original languageEnglish
Title of host publicationProceedings of the International Offshore and Polar Engineering Conference
EditorsJ.S. Chung, R. Frederking, H. Saeki, H. Moshagen
PublisherISOPE
Pages605-609
Number of pages5
Volume1
Publication statusPublished - 1998
EventProceedings of the 1998 8th International Offshore and Polar Engineering Conference. Part 2 (of 4) - Montreal, Can
Duration: 1998 May 241998 May 29

Other

OtherProceedings of the 1998 8th International Offshore and Polar Engineering Conference. Part 2 (of 4)
CityMontreal, Can
Period98-05-2498-05-29

All Science Journal Classification (ASJC) codes

  • Ocean Engineering

Fingerprint Dive into the research topics of 'Wave propagating over poro-elastic bed'. Together they form a unique fingerprint.

Cite this