TY - JOUR
T1 - Xenografted human amniotic fluid-derived stem cell as a cell source in therapeutic angiogenesis
AU - Liu, Yen Wen
AU - Roan, Jun Neng
AU - Wang, Saprina P.H.
AU - Hwang, Shiaw Min
AU - Tsai, Ming Song
AU - Chen, Jyh Hong
AU - Hsieh, Patrick C.H.
N1 - Funding Information:
This work was supported by the National Cheng Kung University Hospital ( 9702004 , 9803001 ), the National Science Council ( 97IR082 , 96-2321-B-006-007 ), and the National Health Research Institutes ( EX97-9722SI ).
PY - 2013/9/20
Y1 - 2013/9/20
N2 - Background: Amniotic fluid-derived stem cells (AFSCs) are pluripotent with high renewal capacity and are not tumorigenic. We tested whether AFSCs can function as a cell source for therapeutic angiogenesis in a mouse hindlimb ischemia model. Methods: Using a defined culture medium for endothelial lineage cells (ECs), we differentiated human AFSCs into AFSC-derived ECs (AFSC-ECs) in vitro, as evidenced by expression of EC markers, and capillary-like network formation on Matrigel. We assessed the in vivo therapeutic angiogenesis efficacy of AFSC-ECs in an athymic nude mouse model of hindlimb ischemia. One day after high ligation of the external iliac artery in athymic nude mice, AFSC-ECs were intramuscularly injected into ischemic limbs. Results: The AFSC-ECs demonstrated endothelial cell characteristics in vitro. Four weeks later, AFSC-ECs transplantation significantly increased limb salvage (85%), compared to AFSCs (56%), human umbilical vein endothelial cells (HUVECs; 25%), or medium (0%). Laser Doppler perfusion analysis revealed that the ischemic/normal limb blood perfusion ratio significantly improved in the AFSC-EC group. AFSC-EC transplantation significantly increased capillary and arteriole densities as compared to AFSCs, HUVECs, and medium. Transplanted AFSC-ECs were incorporated into vessels in the ischemic region, as confirmed by immunofluorescent staining for human smooth muscle 22α or von Willebrand factor. Matrix metalloproteinase (MMP)-3 and MMP-9 expressions were significantly higher in AFSC-ECs. MMP-9 might activate angiogenesis by regulation of vascular endothelial growth factor. Conclusions: Our study indicated that AFSC-EC transplantation improved limb salvage and blood perfusion by promoting neovascularization. Therefore, AFSC-ECs possess the potential for therapeutic angiogenesis.
AB - Background: Amniotic fluid-derived stem cells (AFSCs) are pluripotent with high renewal capacity and are not tumorigenic. We tested whether AFSCs can function as a cell source for therapeutic angiogenesis in a mouse hindlimb ischemia model. Methods: Using a defined culture medium for endothelial lineage cells (ECs), we differentiated human AFSCs into AFSC-derived ECs (AFSC-ECs) in vitro, as evidenced by expression of EC markers, and capillary-like network formation on Matrigel. We assessed the in vivo therapeutic angiogenesis efficacy of AFSC-ECs in an athymic nude mouse model of hindlimb ischemia. One day after high ligation of the external iliac artery in athymic nude mice, AFSC-ECs were intramuscularly injected into ischemic limbs. Results: The AFSC-ECs demonstrated endothelial cell characteristics in vitro. Four weeks later, AFSC-ECs transplantation significantly increased limb salvage (85%), compared to AFSCs (56%), human umbilical vein endothelial cells (HUVECs; 25%), or medium (0%). Laser Doppler perfusion analysis revealed that the ischemic/normal limb blood perfusion ratio significantly improved in the AFSC-EC group. AFSC-EC transplantation significantly increased capillary and arteriole densities as compared to AFSCs, HUVECs, and medium. Transplanted AFSC-ECs were incorporated into vessels in the ischemic region, as confirmed by immunofluorescent staining for human smooth muscle 22α or von Willebrand factor. Matrix metalloproteinase (MMP)-3 and MMP-9 expressions were significantly higher in AFSC-ECs. MMP-9 might activate angiogenesis by regulation of vascular endothelial growth factor. Conclusions: Our study indicated that AFSC-EC transplantation improved limb salvage and blood perfusion by promoting neovascularization. Therefore, AFSC-ECs possess the potential for therapeutic angiogenesis.
UR - http://www.scopus.com/inward/record.url?scp=84883778795&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84883778795&partnerID=8YFLogxK
U2 - 10.1016/j.ijcard.2012.09.072
DO - 10.1016/j.ijcard.2012.09.072
M3 - Article
C2 - 23046594
AN - SCOPUS:84883778795
SN - 0167-5273
VL - 168
SP - 66
EP - 75
JO - International Journal of Cardiology
JF - International Journal of Cardiology
IS - 1
ER -