TY - JOUR
T1 - Zwitterionic semi-IPN electrolyte with high ionic conductivity and high modulus achieving flexible 2.4 V aqueous supercapacitors
AU - Wang, Po Hsin
AU - Tseng, Li Hsiang
AU - Li, Wei Cheng
AU - Lin, Chen Hsueh
AU - Wen, Ten Chin
N1 - Funding Information:
Ministry of Science and Technology of Taiwan and Center of Applied Nanomedicine ( CAN ) of National Cheng Kung University are acknowledged for the financial supports. Authors greatly acknowledged financial support from the Ministry of Science and Technology in Taiwan ( MOST 106–2221-E-390–025 and MOST 108–2221-E-006 −159 -MY3 ).
Publisher Copyright:
© 2021 Taiwan Institute of Chemical Engineers
PY - 2021/9
Y1 - 2021/9
N2 - Polymer electrolytes (PEs) have the widespread interest for solid-state supercapacitors. As an ideal PEs, it is requested to possess high ionic conductivity, high electrolyte content, and excellent mechanical properties. Here, we present the zwitterionic semi-interpenetrating polymeric network electrolytes (ZSIPNEs) that enable achieving ultra-high ionic conductivity and excellent mechanical properties. ZSIPNEs are synthesis by interpenetrating various content of poly(sulfobetaine methacrylate) (pSBMA) into zwitterionic polymer (ZP) matrix, being simply prepared by 17 m NaClO4(aq) intake. At content of pSBMA of 0.1%, ZS-0.1 possesses the ultra-high ionic conductivity of 135.2 mScm−1 at 25 °C. In addition, ZS-0.1 shows excellent mechanical properties, including the compressive strength of 0.36 MPa, compressive strain of 74.5%, compressive modulus of 33.7 kPa, and toughness of 4.329 Jm−3. Furthermore, the electrochemical performances of electrolytes are studied using carbon-based supercapacitors which are assembled with 17 m NaClO4(aq) (C-aq), ZS-0 (C-ZPE), and ZS-0.1 (C-ZSIPNE), being evaluated by electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge. C-ZSIPNE shows the wide electrochemical window of 2.4 V and the superior electrochemical performance by delivering high energy density of 83.6Whkg−1, and high power density of 19.1kWkg−1. Under bending angles of 90°, the capacitance of C-ZSIPNE keeps at almost 100%, being potential application in flexible supercapacitors. 3 brief informative subheadings: Zwitterionic polymer electrolyte, Semi-interpenetrating polymeric network, High performance supercapacitors Background: Polymer electrolytes (PEs) have the widespread interest for solid-state supercapacitors. As an ideal PEs, it is requested to possess high ionic conductivity, high electrolyte content, and excellent mechanical properties. Methods: The ionic conductivity of PE was evaluated by electrochemical impedance spectroscopy. The mechanical properties of PE were evaluated by compressive strain-stress curve. The electrochemical properties of PE were evaluated by electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge. Significant Findings: ZSIPNEs enable achieving ultra-high ionic conductivity of 135.2 mScm−1 and excellent mechanical properties (compressive modulus of 33.7 kPa). C-ZSIPNE shows the wide electrochemical window of 2.4 V and the superior electrochemical performance by delivering high energy density of 83.6Whkg−1, and high power density of 19.1kWkg−1. Under bending angles of 90°, the capacitance of C-ZSIPNE keeps at almost 100%, being potential application in flexible supercapacitors.
AB - Polymer electrolytes (PEs) have the widespread interest for solid-state supercapacitors. As an ideal PEs, it is requested to possess high ionic conductivity, high electrolyte content, and excellent mechanical properties. Here, we present the zwitterionic semi-interpenetrating polymeric network electrolytes (ZSIPNEs) that enable achieving ultra-high ionic conductivity and excellent mechanical properties. ZSIPNEs are synthesis by interpenetrating various content of poly(sulfobetaine methacrylate) (pSBMA) into zwitterionic polymer (ZP) matrix, being simply prepared by 17 m NaClO4(aq) intake. At content of pSBMA of 0.1%, ZS-0.1 possesses the ultra-high ionic conductivity of 135.2 mScm−1 at 25 °C. In addition, ZS-0.1 shows excellent mechanical properties, including the compressive strength of 0.36 MPa, compressive strain of 74.5%, compressive modulus of 33.7 kPa, and toughness of 4.329 Jm−3. Furthermore, the electrochemical performances of electrolytes are studied using carbon-based supercapacitors which are assembled with 17 m NaClO4(aq) (C-aq), ZS-0 (C-ZPE), and ZS-0.1 (C-ZSIPNE), being evaluated by electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge. C-ZSIPNE shows the wide electrochemical window of 2.4 V and the superior electrochemical performance by delivering high energy density of 83.6Whkg−1, and high power density of 19.1kWkg−1. Under bending angles of 90°, the capacitance of C-ZSIPNE keeps at almost 100%, being potential application in flexible supercapacitors. 3 brief informative subheadings: Zwitterionic polymer electrolyte, Semi-interpenetrating polymeric network, High performance supercapacitors Background: Polymer electrolytes (PEs) have the widespread interest for solid-state supercapacitors. As an ideal PEs, it is requested to possess high ionic conductivity, high electrolyte content, and excellent mechanical properties. Methods: The ionic conductivity of PE was evaluated by electrochemical impedance spectroscopy. The mechanical properties of PE were evaluated by compressive strain-stress curve. The electrochemical properties of PE were evaluated by electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge. Significant Findings: ZSIPNEs enable achieving ultra-high ionic conductivity of 135.2 mScm−1 and excellent mechanical properties (compressive modulus of 33.7 kPa). C-ZSIPNE shows the wide electrochemical window of 2.4 V and the superior electrochemical performance by delivering high energy density of 83.6Whkg−1, and high power density of 19.1kWkg−1. Under bending angles of 90°, the capacitance of C-ZSIPNE keeps at almost 100%, being potential application in flexible supercapacitors.
UR - http://www.scopus.com/inward/record.url?scp=85109084617&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85109084617&partnerID=8YFLogxK
U2 - 10.1016/j.jtice.2021.06.044
DO - 10.1016/j.jtice.2021.06.044
M3 - Article
AN - SCOPUS:85109084617
SN - 1876-1070
VL - 126
SP - 58
EP - 66
JO - Journal of the Taiwan Institute of Chemical Engineers
JF - Journal of the Taiwan Institute of Chemical Engineers
ER -