TY - JOUR
T1 - β-Adrenergic modulation of arrhythmogenesis and identification of targeted sites of antiarrhythmic therapy in Timothy (LQT8) syndrome
T2 - A theoretical study
AU - Sung, Ruey J.
AU - Wu, Yung Han
AU - Lai, Nathan Hsing Jung
AU - Teng, Chun Hao
AU - Luo, Ching Hsing
AU - Tien, Hui Chun
AU - Lo, Chu Pin
AU - Wu, Sheng Nan
PY - 2010/1
Y1 - 2010/1
N2 - Timothy syndrome (TS) is a malignant form of congenital long QT syndrome with a mode of arrhythmia onset often triggered by enhanced sympathetic tone. We sought to explore mechanisms by which β-adrenergic stimulation (BAS) modulates arrhythmogenesis and to identify potential targeted sites of antiarrhythmic therapy in TS. Using a dynamic Luo-Rudy ventricular myocyte model incorporated with detailed intracellular Ca2+ cycling, along with its one-dimensional multicellular strand, we simulated various clinical scenarios of TS, with stepwise increase in the percentage of G406R Ca v1.2 channels from 0 to 11.5 and 23%, and to 38.5 and 77%, respectively, for heterozygous and homozygous states of TS1 and TS2. Progressive prolongation of action potential duration (APD) and QT interval, accompanied by amplification of transmural dispersion of repolarization, steepening of APD restitution, induction of delayed afterdepolariztions (DADs), and both DAD and phase 3 early afterdepolariztion-mediated triggered activities, correlated well with the extent of G406R Cav1.2 channel mutation. BAS amplified transmural dispersion of repolarization, steepened APD restitution, and facilitated inducibility of DAD-mediated triggered activity. Systematic analysis of intracellular Ca2+ cycling revealed that sarcoplasmic reticulum Ca2+ ATPase (uptake current) played an essential role in BAS-induced facilitation of DAD-mediated triggered activity and, in addition to L-type calcium current, it could be an effective site of antiarrhythmic therapy under the influence of BAS. Thus G406R Cav1.2 channel mutation confers not only a trigger, but also a substrate for lethal ventricular arrhythmias, which can be exaggerated by BAS. It is suggested that, besides β-adrenergic blockers and L-type calcium current channel blockers, an agent aimed at reduction of sarcoplasmic reticulum Ca2+ ATPase uptake current may provide additional antiarrhythmic effect in patients with TS.
AB - Timothy syndrome (TS) is a malignant form of congenital long QT syndrome with a mode of arrhythmia onset often triggered by enhanced sympathetic tone. We sought to explore mechanisms by which β-adrenergic stimulation (BAS) modulates arrhythmogenesis and to identify potential targeted sites of antiarrhythmic therapy in TS. Using a dynamic Luo-Rudy ventricular myocyte model incorporated with detailed intracellular Ca2+ cycling, along with its one-dimensional multicellular strand, we simulated various clinical scenarios of TS, with stepwise increase in the percentage of G406R Ca v1.2 channels from 0 to 11.5 and 23%, and to 38.5 and 77%, respectively, for heterozygous and homozygous states of TS1 and TS2. Progressive prolongation of action potential duration (APD) and QT interval, accompanied by amplification of transmural dispersion of repolarization, steepening of APD restitution, induction of delayed afterdepolariztions (DADs), and both DAD and phase 3 early afterdepolariztion-mediated triggered activities, correlated well with the extent of G406R Cav1.2 channel mutation. BAS amplified transmural dispersion of repolarization, steepened APD restitution, and facilitated inducibility of DAD-mediated triggered activity. Systematic analysis of intracellular Ca2+ cycling revealed that sarcoplasmic reticulum Ca2+ ATPase (uptake current) played an essential role in BAS-induced facilitation of DAD-mediated triggered activity and, in addition to L-type calcium current, it could be an effective site of antiarrhythmic therapy under the influence of BAS. Thus G406R Cav1.2 channel mutation confers not only a trigger, but also a substrate for lethal ventricular arrhythmias, which can be exaggerated by BAS. It is suggested that, besides β-adrenergic blockers and L-type calcium current channel blockers, an agent aimed at reduction of sarcoplasmic reticulum Ca2+ ATPase uptake current may provide additional antiarrhythmic effect in patients with TS.
UR - http://www.scopus.com/inward/record.url?scp=73549088485&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=73549088485&partnerID=8YFLogxK
U2 - 10.1152/ajpheart.00232.2009
DO - 10.1152/ajpheart.00232.2009
M3 - Article
C2 - 19855067
AN - SCOPUS:73549088485
SN - 0363-6135
VL - 298
SP - H33-H44
JO - American Journal of Physiology
JF - American Journal of Physiology
IS - 1
ER -