1.3 μm strain-compensated InGaAsP planar buried heterostructure laser diodes with a TO-Can package for optical fiber communications

Chia Lung Tsai, Yi Lun Chou, Y. S. Wang, S. J. Chang, Meng Chyi Wu, W. Lin

研究成果: Article同行評審

9 引文 斯高帕斯(Scopus)

摘要

In this paper, we report on the realization of the 1.3 μm strain-compensated InGaAsP buried heterostructure (BH) laser diodes (LDs) by using an Fe-doped semi-insulating InP layer. The performances of LDs are characterized by light output power, internal quantum efficiency, modal gain, characteristic temperature (T0), and dynamic response. As a result of the good confinement of the injection carriers within the strained-compensated multiple quantum well (SC-MQW) and the better heat sink for thermal dissipation, the BH LDs exhibit a threshold current of 9 mA, a slope efficiency of 0.296 mW/mA, and a maximum light output power of 11.8 mW/facet at 76 mA. Besides, the transparent current density and modal gain are estimated as 106 A/ cm 2 and 12.5 cm-1, respectively, for the fabricated LDs. Otherwise, the BH LD with a facet coating is beneficial to get a lower threshold current, a higher light output power, and an improved T0 value as compared to the conventional ridge-waveguide LD. Furthermore, this transistor outlook (TO)-packaged BH LD for small-signal analyses does not show any parasitic effects at low frequencies and has a maximum modulation frequency of 9.6 GHz at 80 mA. Finally, the BH LD also exhibits the promising potential for high speed data transmission as evaluated from the 10 Gb/s eye-opening feature. These results imply that the 1.3 μm TO-packaged SC-MQW InGaAsP LDs are excellent candidates for use in high speed optical fiber communications.

原文English
頁(從 - 到)H903-H907
期刊Journal of the Electrochemical Society
156
發行號12
DOIs
出版狀態Published - 2009

All Science Journal Classification (ASJC) codes

  • 電子、光磁材料
  • 可再生能源、永續發展與環境
  • 表面、塗料和薄膜
  • 電化學
  • 材料化學

指紋

深入研究「1.3 μm strain-compensated InGaAsP planar buried heterostructure laser diodes with a TO-Can package for optical fiber communications」主題。共同形成了獨特的指紋。

引用此