TY - JOUR
T1 - 16-Hydroxycleroda-3,13-Dien-15,16-Olide Induces Apoptosis in Human Bladder Cancer Cells through Cell Cycle Arrest, Mitochondria ROS Overproduction, and Inactivation of EGFR-Related Signalling Pathways
AU - Chen, Yu Chi
AU - Wang, Po Yu
AU - Huang, Bu Miin
AU - Chen, Yu Jen
AU - Lee, Wei Chang
AU - Chen, Yung Chia
N1 - Publisher Copyright:
© 2020 by the authors.
PY - 2020/9
Y1 - 2020/9
N2 - A clerodane diterpene compound 16-hydroxycleroda-3,13-dien-15,16-olide (CD) is considered a therapeutic agent with pharmacological activities. The present study investigated the mechanisms of CD-induced apoptosis in T24 human bladder cancer cells. CD inhibited cell proliferation in a concentration and time-dependent manner. CD-induced overproduction of reactive oxygen species and reduced mitochondrial membrane potential, associated with reduced expression of Bcl-2 and increased levels of cytosolic cytochrome c, cleaved PARP-1 and caspase-3. In addition, CD treatment led to cell cycle arrest at the G0/G1 phase and inhibited expression of cyclin D1 and cyclin-dependent kinases 2 and 4 and led to increased levels of p21, p27Kip1 and p53. All of these events were accompanied with a reduction of pEGFR, pMEK1/2, pERK1/2, pAkt, pmTOR, pP70S6K1, HIF-1α, c-Myc and VEGF. RNAseq-based analysis revealed that CD-induced cell death was characterised by an increased expression of stress and apoptotic-related genes as well as inhibition of the cell cycle-related genes. In summary, CD induces apoptosis in T24 bladder cancer cells through targeting multiple intracellular signaling pathways as a result of oxidative stress and cell cycle arrest.
AB - A clerodane diterpene compound 16-hydroxycleroda-3,13-dien-15,16-olide (CD) is considered a therapeutic agent with pharmacological activities. The present study investigated the mechanisms of CD-induced apoptosis in T24 human bladder cancer cells. CD inhibited cell proliferation in a concentration and time-dependent manner. CD-induced overproduction of reactive oxygen species and reduced mitochondrial membrane potential, associated with reduced expression of Bcl-2 and increased levels of cytosolic cytochrome c, cleaved PARP-1 and caspase-3. In addition, CD treatment led to cell cycle arrest at the G0/G1 phase and inhibited expression of cyclin D1 and cyclin-dependent kinases 2 and 4 and led to increased levels of p21, p27Kip1 and p53. All of these events were accompanied with a reduction of pEGFR, pMEK1/2, pERK1/2, pAkt, pmTOR, pP70S6K1, HIF-1α, c-Myc and VEGF. RNAseq-based analysis revealed that CD-induced cell death was characterised by an increased expression of stress and apoptotic-related genes as well as inhibition of the cell cycle-related genes. In summary, CD induces apoptosis in T24 bladder cancer cells through targeting multiple intracellular signaling pathways as a result of oxidative stress and cell cycle arrest.
UR - http://www.scopus.com/inward/record.url?scp=85090181043&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85090181043&partnerID=8YFLogxK
U2 - 10.3390/molecules25173958
DO - 10.3390/molecules25173958
M3 - Article
C2 - 32872665
AN - SCOPUS:85090181043
SN - 1420-3049
VL - 25
JO - Molecules
JF - Molecules
IS - 17
M1 - 3958
ER -