TY - JOUR
T1 - 3D cell capture and sensing array electrode (3D ECCSA) under extremely low frequency electromagnetic fields (ELF-EMF)
AU - Liu, Chan Yi
AU - Chen, Chun Hong
AU - Jang, Ling Sheng
AU - Wang, Min Haw
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/10/15
Y1 - 2020/10/15
N2 - Recently, many studies have shown that extremely low frequency electromagnetic fields (ELF-EMF) may lead to enhanced cell proliferation and inhibit the growth of specific cancer cells. In this study, 3D cell-based biosensors and an ELF-EMF device are integrated for real-time, non-invasive monitoring of single cell culture and measurement under ELF-EMF. MDA-MB-231 cells are cultured in a three-dimensional cell capture and sensing array electrode (3D ECCSA) chip under different intensities of ELF-EMF. A single cell is captured in the electrode for long-term impedance measurement (12 h). In this period, MDA-MB-231 cell goes through three different stages: cell capture, cell growth, and cell division, which can be measured by changes in impedance. Furthermore, the cellular impedance in ELF-EMF was found to be significantly lower than that of the group without ELF-EMF. In addition, an equivalent circuit was developed to determine the cellular resistance and capacitive reactance, and Maxwell's mixture theory was used to determine the cell conductivity and permittivity to verify the effects of electromagnetic fields on cell membrane permeability and calcium ion exchange.
AB - Recently, many studies have shown that extremely low frequency electromagnetic fields (ELF-EMF) may lead to enhanced cell proliferation and inhibit the growth of specific cancer cells. In this study, 3D cell-based biosensors and an ELF-EMF device are integrated for real-time, non-invasive monitoring of single cell culture and measurement under ELF-EMF. MDA-MB-231 cells are cultured in a three-dimensional cell capture and sensing array electrode (3D ECCSA) chip under different intensities of ELF-EMF. A single cell is captured in the electrode for long-term impedance measurement (12 h). In this period, MDA-MB-231 cell goes through three different stages: cell capture, cell growth, and cell division, which can be measured by changes in impedance. Furthermore, the cellular impedance in ELF-EMF was found to be significantly lower than that of the group without ELF-EMF. In addition, an equivalent circuit was developed to determine the cellular resistance and capacitive reactance, and Maxwell's mixture theory was used to determine the cell conductivity and permittivity to verify the effects of electromagnetic fields on cell membrane permeability and calcium ion exchange.
UR - http://www.scopus.com/inward/record.url?scp=85086732191&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85086732191&partnerID=8YFLogxK
U2 - 10.1016/j.snb.2020.128444
DO - 10.1016/j.snb.2020.128444
M3 - Article
AN - SCOPUS:85086732191
SN - 0925-4005
VL - 321
JO - Sensors and Actuators, B: Chemical
JF - Sensors and Actuators, B: Chemical
M1 - 128444
ER -